ATl RenderMonkey IDE

RenderMonKey INtrodUCTION..................ueeeemmeeiiieeieee e en s e e e s ssmmr s e s ens s ssnnes 3
LY Lo = oY =Y o N 4
ApPPlication MeNU ... —————————— 5
THE FIlE MENU ..ttt e et e e st e e e e s rabe e e e e abeeeeanes 5

THE EQIt MENU ...ttt e s b e e e s bt et e e s anbe e e e s anbeeeeaaee 5

THE VIEBW MEINU ...ttt e e e aa e e e e e e e e e aan e e e e s aareeenaane 6

THE WINAOW MENU ...ttt e e e e e e ab e e e e sn e e e e s sanneeee e 6

L L= oI 11T 1 TSP PP PPt 7
Application TOOIDAL ... s 8
RenderMonkey File FOrmat...........ooo e s 9
WOTIKSPACE VIBW ...ceiiiiiiiiicicimecererrisssssssssseesn s s sssssssssms s e s s ssssssssssmssessesssnsssssnnsnesnnssasssannnsnnnsnesansnnnns 9
Managing EffECt GrOUPScoiuiiii et 10
Managing EffECtScooi e 12
Managing Vari@bIEsoooiiiiiiiiiiee e 13
Predefined Variables. s 15
Managing RENAEr PaSSES..........ouiiiiiiiiiiiiie et 18
Managing Pixel and Vertex Shaderscoocuiii oo 20
Managing Render State BlOCKooiiiiiiii e 21
Application Prefer@nCes..... et 22
Cycle time for pre-defined ‘time’ variable...............cccoooiuiiiiiiii e 23

AULO REITESN ... ettt e e nne e 23
Default DIFECIOMIESiiiiiiiieie et s 24
Rendering Refresh Rateoouiiii i 24
Reset Camera on Effect Change..........oocueiiiiiiiii e 24

1 Lo o L7 =R 25

PreVIEW MOGUIEcccuiieeeiiiiieiiiieia i iresss s ress s s s ssns s rssssssrenssssasnssssensssssaansssssenssssrennsssrennssnssnnnnns 25

OUtPUt MOAUIE ...t 30
Stream Mapping MoOdUIE............ei e mmn e 30
Shader Editor Module ... 32
Editing ASSEMDIY ... e e e 34
Editing the High Level Shading Language............cc.uuvviiiiiiiiiiiieeeeee et 36
Editing NOteS ... s 40
Editing Variables ... 40
S Tor= | F= LY = Ty =] o] [ORI 41

[V Z=Ted (o] Y= T4 =T o] PP 41
MaLFiX Var@DIESot eaeeas 42
LO70] o] V=T g T= o 1= T PO PP PPN 42
MOAEI VArTADIES ... e e 43
Texture, Cubemap and Volume Texture Variablescccccoooiiiiiiiiiiii e 43
Renderable Texture SUPPOIt.... ... s 45
Editing Renderable TEXIUIEoo e 48
Editing RENAEr TaArget.......coo it e e e e e e aaeeeaa s 49
Editing Camera Node Settings........ccccecrerrrriririrsssrrrrrssereress e e sss e s sms e e es 49
N T3 B o o 52
Editing variables in the artist editor module ... 54
L670] (] = T SO SPPR 54

RV =Tl (o] £ TSP 54

RS Ter=] 1= [PSP PRSP 55
RenderMonkey Support and FEEADACK............ceeeeeceeereemieererisesisssenenesessssssssssmennssnsssssssssmnnnsssssses 56

RenderMonkey Introduction

Many of the current challenges facing 3D graphics application developers are centered on
creating and using programmable graphics shaders.

These programmable graphics shaders are at the heart of all future graphics chips. With the
introduction of the Radeon 9000, they are now supported on the entry level PC and will soon
trickle down to all other devices.

The developers with the ability to create and use these programmable shaders will be able to
take advantage of all that the hardware offers and create applications that redefine the art of real-
time graphics.

In order to help developers unlock the creative potential of these chips, ATl Technologies is
developing a family of tools - the RenderMonkey™ toolset.

The RenderMonkey Integrated Development Environment (IDE) is the first of these components
to be released.

Our motivation for developing the RenderMonkey IDE is to provide

A powerful programmer’s development environment for creating shaders.
e A standard delivery mechanism to facilitate the sharing of shaders amongst developers.

o A flexible, extensible framework that supports the integration of custom components and
provides the basis for future tools development.

e An environment where not just programmers but artists and game designers can work to
create mind-blowing special effects.

e A tool that can easily be customized and integrated into a developer’s regular workflow.

This release of the RenderMonkey IDE provides support for all shader models provided with
DirectX 9.0 (including HLSL).

Interface overview

The RenderMonkey application interface has been designed to be intuitive for any developer that
has used an IDE tool such as Microsoft® Visual Studio®.

The main interface consists of:
o a Workspace View which shows the Effect Workspace being edited
¢ an Output Window for compilation results and text messages from the application

e a Preview Window used to preview effects being edited

e Other editor modules such as editors for shaders themselves, or GUI editors for shader
parameters. Shader parameters can be tagged as “Artist Editable” and then edited in a
coherent way using either the artist editor module, or through the Workspace View Artist
Tab.

ertionkey Dirccti 3.0 Reflections Refractions.rix alolx
Bl Edt Vew indm beo

sﬂ.ﬂ e IHN

3 RenderHoakey Texture Editor £

Gy e | don | Refiacion Dcasn | |

i [* Colors

P— ERCEEN N N

Cumerd Cube Testure: [Stage 0] syl shyios
[Vectors

1 e e N

=3 Reflecson, Refraction and Water |
Denth Attenusted Redection

::::”I [¥ Sealars
| rareioest [ewsimes | 0350 s| I cwmotm | G0 2| ln [1600s]
) [mew [#5090 cmoben [00508 2] la [5000 5|
ii{g: oo [%08 o] - oo | @0880 | 1 [00 5
b |..msm 020 =| |l fioen. ijm,Wj
"‘:;ﬂﬂ“mlﬂl
o x
= (P s
Comers Vertes: Shader | el Shader |
b T Conimt s

e _pao; Tegister(c0).
le- reqs st:r(c ¥

7S_OUTFOT ma atd Pos: POSITION. floar3 mormal: WORKAT
V5.« Wﬂ‘L‘r Out

Get scae size on the vater
= 1000,

4] || =
™ Cut Pos = nul{view_proj_satriz. Pos):
Soa[@ s | ey
[Traw ny curent sifect in the Directl previev vindoy using REF fasterizer
o~ b

Using
uaum aonvare uemas(pros
h

HediasTaxtures-Hoisavolune . ds)

ing vo. t
|r1. ng sof Lware vert ing in or for rendes hoder-based of fects
Lraving carrent sifoct in the DirectX Frevier vindov using RD’ rasl:nxel Done
[

| Lt |

[Rerdermioriey
!'.'sug] [ATI Rendertionkey Di. S aoonlg MADELESODRLRE

Application Menu
The application menu contains standard File, Edit, View, Window, and Help menu options.

File Edit Wwiew ‘indow Help

The File menu

File Edit “ew ‘Window Help New (Ctrl-N) command creates a new Effect Workspace. By
default, the new workspace starts out empty, with just the

Tty Ckrl-I . . -

- - workspace node itself. If the user selected New while working on
: ’ \ an unsaved workspace, the application will prompt the user to

P‘rce”t = save currently opened workspace first.

Close

Open (Ctrl-O) opens an existing Effect Workspace file.
Savefs ChlShift-s Recent Files menu provides the user a list of 5 recently used
RenderMonkey workspace files.
Export...
Close command closes the currently opened workspace. If the
Exit current workspace the user has been working on has been
modified without being saved, the application will prompt the user
to save the workspace prior to closing it.

Save (Ctrl-S) command saves the currently opened workspace.
Save As (Ctrl-Shift-S) will prompt the user to change the current file name and\or location.

RenderMonkey IDE allows developers to create custom plug-ins supporting their own file format.
To accomplish that, they can create importer and exporter plug-ins to convert the data from
custom file formats to RenderMonkey run-time database format. The Import command allows the
user to load a custom data file using one of the plug-ins, if any are found, and convert the data to
RenderMonkey database format. Notice that version 1.0 of RenderMonkey does not include any
importer plug-ins, however, examples will be provided with the SDK.

Similarly, the user can select Export command to convert from the RenderMonkey data format to
a different file format. Version 1.0 includes ability to export from RenderMonkey native data
format to Microsoft DirectX 9.0 .fx file format. There are certain restrictions on the syntax of data
presented in the RenderMonkey workspace in order to output valid FX files.

Exit will close the application, prompting the user to save any currently opened Effect Workspace.

The Edit menu

File Edit Wiew ‘Window Help The Edit menu contains the following commands: Undo, Redo,
Undo Chrl-7 Cut, Copy, Paste, Delete, Commit Changes, and Preferences
E Redo Chrl-

options.

Cuk Chl-x The Undo command (Ctrl-Z) allows the user to undo the last
Copy Ch-C undoable operation, and return RenderMonkey to its previous
Paste Chly state. The application allows the users to undo all operations

on the nodes done in the workspace view, for example,
deleting, pasting, renaming of any nodes in the workspace.
The shader editor also supports standard set of text operations
undo functionality.

Delete Dl

Commit Changes F7

Preferences. ..
The Redo menu option (Ctrl-Y) will redo an undone operation.

Undo / Redo operations will cover node renaming, cut, copy, and paste operations, changing the
Active Effect, and adding or deleting nodes.

The Cut, Copy, Paste and Delete operations will work on individually selected nodes, as well as
with text in the text editors. Please note that these operations will not work on the Effect
Workspace node itself since at any time you may not have more than one opened effect
workspace. Note that you can cut / copy / paste nodes across multiple files in a single instance of
the application.

Commit Changes (F7) will compile and commit the currently active shader in the shader editor.
The Preferences... menu option will open up the application Preferences Dialog (see the section

on Application Preferences below for more details).

The View menu

Fil= Edit Yiew ‘Window Help The View menu allows the user to open or close main
RenderMonkey modules windows, such the workspace view
v Workspace
IV window, the output window, the preview window and the artist
w P editor window.
Preview
Artisk Editor

The Window menu

File Edit Wiew Window Help The Window menu contains standard window options such
Close as Close, Close All, Cascade, Tile Horizontally, and Tile
@ @ Close Al Vertically options. A list of opened windows will also be
maintained at the bottom of the menu, allowing the user to
Cascade quickly bring an opened window into focus by selecting the
Tile Harizontally window from a list.
Tile Wertically

The Help menu

File Edit “iew ‘Window Help The help menu gives access to the About dialog. The
about dialog contains version information, as well as

m m m E_AEi_I contact information for application support or feedback:

About RenderMonkey

Fendertdorkey 1.0
(] —
3D Application Research Group
Lead programmer:
Matasha Tatarchuk

Frogrammers:
Ben Mistal
Tozhiaki Tzwji

Past Contributars:
Drew Card
Chiris Oat

Project Manager

Callan b clnally

For zupport or ta provide feedback email: devreltziati. con

Application Toolbar

The application has a toolbar for commonly used functions.
ﬂﬁﬂ!l 5 B i ik

—| Open Workspace (File Open)

&Pt

lgi I Save Workspace (File Save)

kS

Ta Toggle Workspace Window (View Workspace)
S
[l Toggle Output Window (View Output)
‘ Toggle Output Window (View Preview)
Toggle Artist Editor Window (View Artist Editor)

H Compile Active Shader (F6) (please refer to the Shader Editor Module section for details on
this and the next two commands)

“ Compile All Shaders in Active Effect (F7)

Compile All Shaders in the Workspace (F8)
Rotate Camera (please refer to the Preview Module section for details)

fF% Pan Camera

SE % Zoom Camera
a Camera Home

R

’k % Overloaded Camera Mode

RenderMonkey File Format

Each set of visual effects in RenderMonkey is encapsulated in a single XML workspace,
the “.rfx” file. All of the information necessary for recreation of each effect, excluding the actual
textures and model data, is stored in this single file. It is user-readable and any game developer
can create a converter from the RenderMonkey’s file format into their game engine script format.
We chose XML to store effect workspaces for several reasons. Most importantly, XML is an
industry standard with parsers readily available (RenderMonkey uses the Microsoft XML parser;
there are other alternatives freely available). It allows easy data representation and it is user-
extensible. Best of all, any user can just open an XML RenderMonkey file and read the file
directly in Internet Explorer — it’s just another ASCII file format.

Workspace View

The Workspace View is a dockable window usually positioned on the left of the main interface
containing a tabbed tree control which provides a high level view of the effect database.

“T'Warkspace The workspace view can be used to access all elements
= 8 Effect Workepace —|| in the Effect Workspace. The idea is that individual
1 E= Header effects are going to be grouped by their common
2 ka attributes.
3-1 kd
-] Ks
1 r_specular There are two tabs in the workspace tree view: Effect
%;1 time_0_X tab and Art tab. The Effect tab is used to view and
ey modify the entire workspace — with all variables and
8] view_matric passes visible. The Art tab is used to view only the
%555] view_proj_matrix artist-editable variables that are present in the
g= ngf'ﬂigt workspace. The Art tab will only allow the user to edit
W specular artist-editable nodes, without the ability to add, delete,
B Fieldstone Base rename, etc. This functionality allows the programmers
% E;Tj;";ﬂemp to develop the full effect and then allow the artists to
&89 PNT Stream Mapping modify the effect's rendering output without worrying
€8P PNTTE Stream Mapping about accidentally modifying the effect’s contents.
@ PMTT Stream Mapping
@ PM Stream Mapping .
o Teapat The actual Effect Workspace consists of these
e elements:
offf Sphere
afff Cracked Quad
=123 HLSL Tlumination Effects e Variables (shader parameters)
+-) Per-Vertex Ilumination
+-) Per-Pixel lumination
+ -3 Per-Pixel Illumination With Scrolli o @ Stream Mapplng nodes
+- s Spotlight with Bump
+ eflective Specular Bum
+ Epeculfar BEI:D e e % Models
-2 ASM BumpMapping Effects
H O e o [_1Effect Groups
[§] light =
IS ey P
< > . Default Effects
Effect | @ A

o £ Renderable Textures

o E Notes
All individual items in the workspace are referred to as nodes.

An Effect Group is a mechanism for organizing effects in a large workspace by the effect type or
in any other way intuitive to the user of that workspace. For example, Effect Groups could be
used to facilitate fallback versions of a particular effect to support a wide range of hardware and
SDK versions.

Effect Groups consist of one or more individual Effects. An Effect contains all information needed
to implement a real-time visual effect, such as the shaders, their parameters and related states.
Each effect consists of one or more passes (draw calls) and parameters global for each effect.

Artist Yariable Standard node operations are supported by_the yvorkspace view, such as
. cut / copy / paste/ delete / rename for individual nodes. Each node

Add Mate represents a chunk of data in the effect workspace. If an editor / viewer
| module exists for a node, double clicking on the node will launch the

Rename module. The editor / viewer module may also be launched by right clicking
Cut on the desired node and selecting “Edit”.

Copy

Paste All nodes in the workspace view have tool tips designed to instantly give
Delete detailed information as to the node contents. Such, for variables, the user
Edit . will be able to see the value(s) stored in that variable node, for textures or

model nodes, the user will be able to view the file that that resource uses.
For example, a tool tip for a scalar node will look like this:

1 mv_scalar

0.123400

Managing Effect Groups
Each Effect group is used to encapsulate a series of related effects. For example, you may want
to group all effects that use a noise function to render perturbation effects, such as clouds, fire or
plasma, in one single effect group. Another good use for this node is to group various
implementations of a single effect for fallback rendering in your engine.
The actual Effect Group consists of these elements:

e Variables (shader parameters)

o & Stream Mapping nodes

e i Models
o EDEffects

o £ Renderable Textures

10

o B Notes

To create an Effect Group, the user should right click on the Effect Workspace node in the
workspace view. The user will see the following context menu:

Selecting “Add Effect Group” adds a new Effect Group named
Add EFfect Group “Effect Group #N” at the end of the current workspace. The Effect
Group name is editable, and either double-clicking on it or right-

fdd DEF.aU|t Effect g clicking on it and then selecting “Rename” will allow you to change

LGRS the name for that Effect Group.

Add Stream Mapping

add Model When a new effect group is

Add Renderable Texture added, it is automatically created =13 Effect Group 1
with a sample effect with one = Effect 1

Add Mot rendering pass. The pass inside] view_proj_matrix
that effect contains sample vertex &9 Stream Mapping

Rename and pixel shaders, and a sample o Model
geometry model. (P Single Pass

I? Model

"= vertex Shader
% Pixel Shader
To delete an effect group the user can either right-click on the @ Stream Mapping
effect group the user is trying to delete and select “Delete”, or
simply by pressing the delete key when the desired effect group is selected.

The user can also cut / copy / paste / delete effect group from any point in the workspace.

11

Managing Effects

Each Effect is used to draw a single, coherent visual effect in the viewer. You may have a single
pass effect, or may want to use several draw calls to generate the look that you want.

The actual Effect consists of these elements:

e Variables (shader parameters)

o & Stream Mapping nodes

o ¥ Models
. ’%‘Cameras

e [P Passes

o £ Renderable Textures

o E Notes

To create a new effect, the user should right click on the effect group that the effect should be
added to. The “Add Effect’ option will contain a sub-menu with current API options for the effect.

Add EFfect

Add Variable

Add Stream Mapping
Add Model

Add Renderable Texture

Add Make

Rename
Cuk
Copy
Paste
Delete

4

Directs

The selected effect will be created and added to the
bottom the selected effect group. The effect name is
editable and can be easily changed in the same
manner as every other node name in the application.

Like a newly added effect group, when the new effect
is added, it contains a sample rendering pass.

To preview the effect in
the preview module the
user should right click
on the desired effect
and select “Set As
Active Effect “ from the
effect context menu:

To delete an effect, the user can either right-click on the effect
node and select “Delete” from the context menu, or selecting the

effect node and pressing the delete key.

The user can cut / copy / paste effects from one effect group to

another.

v Set as Active EFfect

Add Camera

Add Pass

Add Variable

Add Stream Mapping
Add Model

Add Renderable Texture

Add Maoke

Rename
Cuk
Copy
Paste
Delete

12

Managing Variables

User-defined data is run-time data needed to render an Effect. Effects and individual passes will
reference the user-defined data by variable name. The scope of variables follows the tree
downwards.

Add Effect Group The user can add data at any level of the workspace tree.
Add Default EFfect L . . .
: To add a new variable, the user must right click on the node to
Add Variable
: which the variable will be added (it can be the main effect
Add Stream Mapping TR
workspace, an effect group, an individual effect or a pass) and
G (it select “Add Variable” from the following context menu:
Add Renderable Texture
Add Mote
Rename

The user then will see this dialog:

rWl."c'ﬂic'd:lve
Tupe
A =
MHame
|name ﬂ
[~ Azt Editable
0K | Cancel ‘

The user can then select from one of the supported data types. Variable types supported by
RenderMonkey are:

e 11 BOOLEAN (true / false)
e [1SCALAR (a simple float variable)
o [l vECTOR (4D float variable)
o [E MATRIX (4x4 float matrix)
e Wl COLOR (4D float variable, RGBA color representation)
e Texture variables:
o EH TEXTURE (2D texture map)
o [CUBEMAP (Cube map texture)

13

o [VOLUME_TEXTURE (3D texture map)

By default new boolean, scalar, vector and matrix variables are created as not artist-editable.
Color, texture, cubemap and volume texture variables are created as artist-editable by default. To
make a variable visible in the Artist Editor or the Art tab in the workspace view, the user may
right-click on that variable and select the “Artist Variable” menu option, or select the “Artist
Editable” option while still in the Add Variable dialog. To remove the artist-editable property from
a particular variable, right-click on the variable and select the “Artist Variable” menu option again.
A check mark on that option indicates whether the variable is artist-editable or not. A small yellow
flag 4 on the variable icon will indicate that the variable is artist editable. For example:

K8 iy _scalar
The user can cut / copy / paste / delete variables from any place in the workspace. The names of
the variables are editable and can be modified at any time by either double-clicking on the
variable node or selecting “Rename” from the right-click menu for that variable.

Please note that there are some naming restrictions places on variables

Artist Variable | 4hat can be referred to within actual shader code. To be consistent with

Add Mate high level shading languages syntax, boolean, vector, matrix, color, and
| texture object nodes must conform to the language naming syntax. The

Fenams name must not contain any spaces, must start with a letter and contain only

Cuk alpha-numeric characters. If the user violates these restrictions for the

Copy above mentioned variable types, a warning will appear.

Paste

Delete

Edit

14

Predefined Variables

RenderMonkey provides a set of predefined variables for added shader development
convenience. Such variables will display an appropriate tool tip (Predefined Variable) if the
mouse hovers over them. Predefined variables are shader constants whose values get filled in at
run-time by the viewer module directly at every frame. You cannot modify the values directly
through the same user interface that you can use to edit other variables of similar types. A

To add a predefined variable to the workspace, the use should select the appropriate type of
predefined variable that they would like to use and then choose the name from the combo box
control that will appear in the Name group of the Add Variable dialog. Note that the combo box
will only appear if the selected type has some pre-defined variables. If the user then chooses
another type for a given predefined variable name, it will not be appropriately initialized at run-
time, as RenderMonkey identifies predefined variables by both name and type.

"u’a riable ‘

Type

[MATRI -]

M ame

|vmw_mDLmaMH -
e prol_matris

iemd_matris

r I _ e _makrs

pro) makrs

k. | Cancel |

Another way to use any of these predefined variables in a shader, is to rename an existing
variable (of the corresponding predefined variable’s type) to match that of the desired predefined
variable. The name must be a case-sensitive match for RenderMonkey to treat it as predefined.
RenderMonkey provides this set of predefined variables for your convenience:

e Scalars:

o time 0 X: Provides a time value (in seconds) which repeats itself
based on the “Cycle time” set in the RenderMonkey Preferences dialog. By
default this “Cycle time” is set to 120 seconds. This means that the value of this
variable cycles from 0 to 120 in 120 seconds and then goes back to 0 again.

o cos_time 0 X: Provides the cosine of time_0 _X.

15

o sin_time 0 _X: Provides the sine of time_0_X.

o tan_time 0 X: Provides the tangent of time_0_X.

o time_cycle_period: Provides the “Cycle time” set in the RenderMonkey
Preferences dialog. For the example above, this value would be 120.

o time 0 _1: Provides a time value [0..1] which repeats itself based
on the Cycle time. This means that if the time cycle was set to 120 seconds, then
within the span of 120 seconds the value of this variable would grow from 0 to 1.

o time_0 _2PI: Provides a time value [0..2PI] which repeats itself based
on the Cycle time similarly to other time variables.

o cos_time 0 2P: Provides the cosine of time_0_2PI.

o sin_time_ 0 _2PI: Provides the sine of time_0_2PI.

o tan_time 0 2PI: Provides the tangent of time_0_2PI.

o viewport_width: Provides the width (in pixels) of the preview window.

o viewport_height: Provides the height (in pixels) of the preview window.

o viewport_inv_width: Provides 1/ viewport_width.

o viewport_inv_height: Provides 1/ viewport_height.

o random_fraction 1: Provides a random number in the range [0..1].

o random_fraction 2: Provides a random number in the range [0..1].

o random_fraction 3: Provides a random number in the range [0..1].

o random_fraction_4: Provides a random number in the range [0..1].

Vectors:
o view_direction: Provides the view direction vector (world space)
o view_position: Provides the view position (world space)
Matrices:

o Vview_proj_matrix: Provides the view projection matrix.

o view_matrix: Provides the view matrix.

o Inv_view_matrix: Provides the inverse of the view matrix.

o proj_matrix: Provides the projection matrix.

16

world_view_proj matrix:Provides the world view projection matrix. Note that
since RenderMonkey version 1.0 does not support implementation of a scene
graph, we have decided to keep the world matrix as identity, but provide this
predefined variable for your development convenience. The user may apply this
variable in their shader and when imported into their engine, they may provide
appropriate value of the world view projection matrix through the engine’s
calculations.

17

Managing Render Passes
An individual effect may have one or more rendering passes (draw calls).
Each rendering Pass may contain the following elements:

e Variables

.« Pa single Render State Block
. HAa single Vertex Shader

o 8 A single Pixel Shader

o TxTexture Objects

) A single Camera Reference

o A single Stream Mapping Reference

. A single Geometry Model Reference

e @ Asingle Render Target

. E Notes

To edit each individual element of the pass the user can double-click on the desired node

v 3et as Ackive Effect

and that will bring up an editor module appropriate for that node. Another way to start editing a
node would be to right-click on a node and select “Edif” menu option for the node context menu.

To create a new rendering pass, the user should right-click on the
effect to which the pass will be added and click “Add Pass” on the

Add Camers effect context menu.

Add Pass

&dd Yariable By default each pass will be created with a sample vertex shader

Add Stream Mapping and _pixel shader and_ a sample geometry_mod_el. The user can

add Model modify those at any time. The pass name is editable and can be
renamed at any point.

Add Renderable Texture

2dd Note To delete a pass the user can either select the pass and press the
delete key or right-click on the pass and select “Delete” on the

PR pass context menu (see below).

o The passes are drawn in the order in which they are arranged

Copy within their parent effect. To move a pass up or down the user can

Paste right-click on the desired pass and select “Move Up” or “Move

Delete Down” from the pass context menu, or hold down the control key

and press the up / down arrows while the pass is selected in the
workspace view:

18

Enable | Disable Pass
add Variable
add Render Stake Block

Add Texture Ohject
add Camera Reference

Add Render Target
Move Lip
Movve Do

Add Moke

Rename
Cuk

Copy
Paste

Delete

The user may also wish to disable a particular pass to aid him/her in shader debugging.
To do that, they can select “Enable / Disable Pass* from the pass context menu (accessible by

right-clicking on the desired pass). A disabled pass will have this icon on the left of its name R
to denote that it is disabled. To enable a pass just click on the same menu option again.

Example of workspace view with a disabled pass:

=3 Effect Group 1

.........................

FA Wertex Shader
24 Pixel shader

@ Skream Mapping
+ @ Effect 2

The user can cut / copy / paste passes from one effect to another.

19

Managing Pixel and Vertex Shaders

This version of RenderMonkey supports Vertex Shaders vs_1 0 - vs_2 0 and Pixel
Shaders versionsps 1 1—ps_2 0.

To create new pixel or vertex shaders, the user must select an effect to which they want to
add the shader, then right-click on the effect and select either “Add Pixel Shader” or “Add Vertex
Shader” menu options, as well as the desired vertex or pixel shader type in order to add the
desired shader.

Enable | Disable Pass

Add Variable

Add Render State Block |

add Vertex Shader L Directs ASM
Directx HLSL

Add Texture Ohject

Add Camera Reference

Add Render Target
Move Up
Mave Dawn

Add Maoke

Renarne
Zuk
Copy
Paste
Delete

DirectX ASM (Assembly) shader nodes will have B icon for the vertex shaders and g

icon for the pixel shaders. DirectX High Level Shading Language shader nodes will have i icon
for the vertex shaders and ®icon for the pixel shaders. Depending on the type of shader
selected the editor will be chosen appropriately — the editor for HLSL shaders is different from an
ASM Shader editor. Editing, and compilation of ASM and HLSL shaders is discussed later in the
section on the Shader Editor module.

The names of the created shaders are editable at any point. The user can cut / copy /
paste individual shaders from one pass to another, provided there is never more than one pixel
and one vertex shader in the pass.

To delete a pixel or a vertex shader the user should select the shader node and then

either press the delete key or right-click on the node or select “Delete” from the shader context
menu.

20

Managing Render State Block

Each pass may have a number of Render States that it may want to either inherit from a
higher-level Pass or set directly. To do that, the user creates a Render State Block at least in one
place within an Effect Workspace.

To create a Render State Block node the user must right-click on a pass that they want to
add the block to, and select “Add Render State Block” from the pass context menu:

Enable | Disable Pass
add Variable
Add Render State Block

Add Texture Object
Add Camera Reference

&dd Render Target
Mowve Up
Mave Dawn

Add Make

Renarme
Zuk
Copy
Paste
Delete

If no render state block is defined within a pass, the application will traverse the
workspace tree upwards from the current pass to find a render state block node and will inherit
the render states from the first render state block found. When you create render state block node
in a pass, it inherits the values from the first higher-level render state block found in the active
effect. If there are no render state blocks created within the active effect, the application will look
through the passes in the default DirectX effect to see if any of them define a render state block.
If there are no other render state block found prior to the one created, it will not inherit any values.
By default the incoming values for the rendering states within a render state block are set to
DirectX default values for those states (please refer to DirectX documentation for actual default
state values).

Changing the render state values in the created render state block node will override
inherited values. Note that for upward traversal the application only looks in the pass within the
current effect and the default effect. The render state block in other effects don’t propagate their
values. To edit any of the render states in a render state block, you can double-click on the
render state block node or right-click on the node and select “Edit” from the node context menu.

21

L7 Effect Workspace\Effect Group 1\Effect 1 =JoJEd

Single Pazz l

State 1 Yalue I Incoming [
ADAPTIVETESS W .
ADAPTIVETESS X

ADAPTIVETESS Y

ADAPTIVETESS_Z

ALPHABLENDEMABLE

ALPHAFUMNC

ALPHAREF

ALPHATESTEMABLE

AMBIEMT

AMBIENTMATERIALSOURCE

ANTIALTASEDLINEEMABLE

BLENDFACTOR ks

BLEMDIOPALPHA

W _STENCILFALL D3DBLENDOP_ADD

WY _STENCILFUMC D3DELENDCOP _SUBTRACT

COW_STENCILPASS

CCW_STENCILZFAIL D3DELEMDOP _REVSUBTRACT

CLIPPIMNG DEDELEMDOP_MIM
CLIPPLAMNEEMABLE C3DBLEMDOP_Mis |
COLORYERTER i — w
il ! WE

To edit a particular render state, left click in the Value column for that render state and
either select from a set of predefined values or type a value directly if none were supplied (see
example in above for the blending op). If the selected render state block inherits from a higher-
level render state block, the incoming values will be shown in the Incoming column of the render
state editor.

To delete a render state block, the user can simply select that node and either press the
delete key or right-click on the node or select “Delete” from the node context menu.

The render state block nodes can be cut / copied / pasted much like other nodes in the
effect workspace.
Application Preferences

The preferences dialog can be invoked through the application menu option
“Preferences...” under the “Edit” menu. This dialog allows the modification of application settings,

and affects all subsequent RenderMonkey sessions. The following settings may be modified on
the “General” preferences page:

22

RenderMonkey Preferences

General
Cycle time for pre-defined
‘time' vanable [zec]: 120,004
Auto Refresh
[Textures
[Models

Default Directories

Testures: |F:'\3darg'\TnoIs‘\HenderMonk Browse
M adels: |F:\3darg\Tools\HenderMonk Browse

Fendering Refresh Rate: Fastest j

[Reszet Camera on Effect Change

(] | Cancel |

Cycle time for pre-defined ‘time’ variable

This option allows the user to modify the cycle period for all predefined time variables
(such as time 0 1 for example. Please refer to the section on Predefined Variables earlier for
more details). The default value is set to 120 seconds; however the user may enter any positive
integer number to control the cycling of the time.

Auto Refresh

RenderMonkey has the ability to continuously scan the disk for modified textures and
models used for rendering the currently active effect in the workspace. If the file has been
modified, the application will reload the resources from that file and update the rendering of the
current effect. This functionality can be very useful for artists as they can be modifying the
resources in another application (for example, editing the textures in Adobe Photoshop), while
maintaining the most up-to-date rendering of the effect they are working on.

The application will check if a file has been modified every n seconds, where n is equal to
the application preference for that particular resource. To enable automatic update of texture
resources, select the Textures checkbox in the application preferences dialog. To set the refresh
period for texture files disk scan, either keep the default value of 5 seconds refresh period or
enter another positive integer number value. Similarly, to enable automatic refresh of models
rendering resources, select the Models checkbox in the preference dialog and define a custom
refresh rate if desired or keep the default value.

Note that only the resources used in rendering of the selected active effect will be
scanned for file modifications and updated.

23

Default Directories

The next two application preferences allow the user to specify default directories used by
RenderMonkey as automatic starting point for locating texture and model resource files. Every
time when a new model or texture is created, RenderMonkey will search starting in the specified
default directory. If the user loads a workspace file, in the event that RenderMonkey fails to find
the sources in the saved directory links, it will attempt to locate the resources by looking in the
default directories for the resource type. If that will be the case, RenderMonkey will notify the user
about a different location for their resource files via a dialog box, if it successfully matched the
missing items filenames with files in the default directories.

To specify the default directory for texture resources, the user to type or select a folder in
the Textures field. Similarly, the user can specify the models default loading directory by providing
a default Models directory value.

Rendering Refresh Rate

The user can control the frequency with which the Preview window will refresh its
contents while rendering the active effect. If the user selects VSync option, the preview window
will wait until vertical retrace is completed to refresh itself — note that selecting that options limits
the frame rate for the preview window to the monitor’s vertical refresh rate. If the user selects
Fastest, the preview window will refresh itself immediately thus resulting in significantly higher
frame rate — but tearing artifacts may be visible in certain effects.

Reset Camera on Effect Change

When the user switches active effects being rendered in the preview window, the
application preference value for Reset Camera on Effect Change controls whether the preview
window camera settings will be reset upon switching the active effect to the default values (thus
bringing it into the origin) if the check box for that preference is selected. Or if the check box is not
selected, the trackball orientation will not be modified upon switching to a new active effect.

24

Modules

Preview Module

The Preview module is used to interactively preview effects in the opened workspace.
The viewer module automatically recognizes the API of the effect and opens an appropriate
renderer for the effect. Version 1.0 of RenderMonkey includes DirectX 9.0 effect rendering,
however, using the plug-in architecture, it is easily possible to write other types of preview
modules.

To view a particular effect, you must select it to be the currently active effect in the
workspace. To do that, right-click on the effect node and select “Set As Active Effect’ from the
context menu for that effect.

rE DirectX 9.0 Preview:: Ocean Water (AS... Q@ﬁ1

RenderMonkey provides an interface for controlling the camera settings for displaying the
active effect. That is done by using the Camera nodes and the Camera Editor. &~ Camera nodes

and ﬁ‘camera reference nodes are used to specify view orientations for each rendering pass.
Camera nodes are placed under an effect, and the camera node marked as “Active” will be
manipulated by the Preview window trackball. A Camera Reference is added to a Pass to
indicate that the referenced camera settings should be used when rendering that pass. See
Editing Camera Settings section to get more details about setting up and editing the camera
nodes.

By default, any effect rendered in RenderMonkey uses an implicit, default camera defined
in the preview window. That camera is not visible to the user but it is active from the start. If an
effect does not have a camera node defined by the user, the effect is rendered using the settings
for the default camera. If the user added one or more camera nodes to the effect and camera

25

references to passes, they can select one of the camera nodes to be the active camera for
rendering of the effect. One can think of RenderMonkey’s camera nodes in the following fashion:
the camera node controls the settings of the rendering camera for rendering of each draw call.
The user can set up the entire effect by using a single camera (either an implicit default one or a
specifically defined camera node). On the other hand, the user may wish to render separate draw
calls with different camera settings (perhaps a different camera position is desired, as to render
from light's point of view). In that case, the user can define separate camera nodes for the
purpose.

Only one camera can be active at one time, however, and that is the camera which gets
modified as the user applies the trackball interface in the preview window to modify the camera.
As the user rotates or pans the camera around in the preview window, the active camera’s values
get updated to reflect the new settings. The buttons on the main application toolbar can be used
to control the mode for the trackball:

:w Rotate Camera: Selecting this mode locks the active camera in the rotation
mode for the active camera. The user will be able to modify
the orientation of the camera by using the left mouse button
in the preview window. This is default starting mode for
trackball.

f¥% Pan Camera: Selecting this trackball mode locks the active camera in
panning mode. Using the left mouse, the user will be able to
pan the camera in the preview window.

:g 4+ Zoom Camera: Selecting this mode locks the active camera in the zoom
mode — by using the left mouse button the user can bring the
camera closer or further from the viewer.

Camera Home: Pressing on this toolbar button will move the active camera
to the origin.

B W

Overloaded Camera Mode: Selecting this mode, the user can use the overload mode for
the trackball: left mouse button will rotate the camera, Ctrl-
left mouse button will pan the camera, and middle mouse
button or the mouse wheel will zoom the camera in and out.

26

The user can also select one of the predefined view settings from the Preview window’s menu.

Right-clicking in the preview window will bring up the menu

Properties displayed on the left. The user can select from one of the following
views defined for the preview window: Original, Front, Back, Lefft,

v :EAFL Right, Top and Bottom views.
Fit Model to Screen The user can also use the DirectX preview window’s menu to
select the type of device used for rendering current effect. By default,
RenderMonkey will try to create HAL rendering device if hardware
Front View settings permit. However, if user’s hardware fails to support hardware
Back View acceleration of shaders, or if they simply wish to view their effect using
Left View the DirectX reference rasterizer, they can select that setting by
Right View selecting REF option from the preview window. Once the user selected
Top View the reference rasterizer, the contents of the preview window will be
Bottorn View updated only on demand, as rendering shader-based effects using
software rasterizer can be quite slow. To update the rendering, the
Show Triad user can press the space bar in the preview window. When rotating or
panning or zooming in the preview window, the user will see the
Show Bounding Box bounding box of rendered objects and the coordinate axes triad in the

preview window when they are modifying the camera.

The Fit Model To Screen menu option will modify the active camera to fit best to the
bounding box of the models in the passes that use this active camera. Note that if any of the
passes in the effect do not use the active camera, Fit Model To Screen mode will not include
these passes for computing the fitting bounding box. Another precaution about this setting and
geometry bounding boxes: if any passes use vertex shaders that modify vertex positions, the
original bounding box will not correspond to actual output vertex positions and thus will not be
correct.

Pressing ‘h’ in the preview window displays all keyboard shortcuts available for the
window. The user can press ‘s’ to toggle display the rendering frame rate of the active effect. The
user can press ‘t’ to reload all textures used for rendering of the active effect, and press ‘m’ to
reload all models used for rendering of the active effect. Pressing ‘b’ will toggle display of the
geometry bounding box and pressing ‘a’ will toggle display of the coordinate axes triad. Pressing
‘u’ will force an update of all rendering resources used to render currently active effect, such as
reloading textures, recreating the buffers, etc.

Pressing ‘p’ in the preview allows the user to view the output of each pass in an array of
mini viewports. Each individual viewport contains the output of each pass and all the passes prior
to the pass. If a pass outputs to a render target, the viewport for that pass will contain the
contents of the renderable texture generated by the pass. In the example below, you see the
output of a soft shadows effect where the shadow is generated in multiple passes blurring the
shadow from the light in successive blurs and then composited onto scene.

27

[ﬂ DirectX 9.0 Preview:: 5oft Shadows effect

The preview window provides automatic error reporting about invalid or missing
resources that are used for rendering currently active effect for the developer of the effect. If you
render an effect which has a constant that isn’t linked correctly to a RenderMonkey variable node
or if the effect attempts to render using an invalid stream map, the renderer module will display an
error in the output window as well as in the preview window itself. The image below shows errors
for the shadows effect if all of the model-related resources were deleted:

28

"'ﬂ DirectX 9.0 Preview:: Soft Shadows effect

o (=103

As you can see, the preview window reports that certain passes will not be rendered correctly
because they are missing a geometry object reference.

In the case of an effect that uses render targets and passes rendering into renderable
textures, if the user creates a pass that uses a renderable texture before it was properly initialized
by another pass that would render into that texture, the renderable texture starts out initialized to
bright green, to provide instant visual feedback to the user about that setup. For example, the
image on the left below is the correct rendering of a glow on a golden coin. The effect is created
by rendering the image of a coin into a renderable texture and then applying a glow on that
texture and compositing the two images. If we delete the pass that renders the golden coin into a
renderable texture, you will see that the glow pass uses a green texture and the overall result in
this particular case is clearly incorrect:

29

'ﬂ DirectX 9.0 Preview:: Go... 'ﬂ DirectX 9.0 Preview:: Go... ‘ A H D ”'x |

Correct rendering of the effect. Incorrect renderable texture initialization output.

Output Module

The output module is a docked window typically located on the bottom of the main
application interface. That window is used to output the results of shader compilation and other
application text messages. The output window is linked with the shader editor for compilation
error highlighting.

- Output _‘

ATI FENDERMOHEEY

Compiling piel shader API(D3D) ~Reflection, REefraction and T
Compiling vertex shader AFI({D3D) ~Feflection. Refraction and
Loading 2D texture map (F:~3darg~Tool=~RenderMonkey~effect=~I
Loading 2D tezxture map (F:~3darg-~Tool=-FRenderMonkev-effects~l
Compiling pixel shader API(D3D) ~Reflection, REefraction and T
Compiling vertex shader API(D3D) ~Reflection, REefraction and
Loading 2D texture map (F:~3darg~Tool=~FenderMonkev-effects~l
Loading 2D texture map (F:~3darg~Tools~RenderMonkey~effects~l
Loading 2D texture map (F:~3ddarg~Tool=~RenderMonkey~effect=~I

B (2]

Stream Mapping Module

The Stream Mapping module is used for stream setup for the geometry model within a
pass. A Stream Mapping node can be created at any point in the workspace (directly under the
effect workspace, directly under an effect group, within an effect group or in an individual pass).

30

To create a stream mapping node, the user may right-click on a parent node (an effect, a pass,
an effect workspace, or an effect group) and select “Add Stream Mapping” menu option from the
context menu (example here is from the effect workspace context menu):

Add Effect Group

Add Default Effect »
Add Variable

Add Stream Mapping

Add Model

Add Renderable Texture

Add Maoke

Fename
Paste

This creates an empty stream mapping node.

To delete a stream mapping node, the user can either delete the node by selecting it first
and then pressing the delete key or by right-clicking on the node and selecting “Delete” from the
node context menu.

Once a stream mapping node is created, the user can edit it by double-clicking on the

node or by right-clicking on the stream mapping node and selecting “Edit’, which will bring up the
stream mapping editor module:

£ Stream Mapping =lo/E

P |

zage Index Tupe

| Pasition ~|[o =l[roats +] X]
[TexComd »|[0 =|[roarz =] ¥]
Momal [0 ~][FEEATE T <] X
|Bin-:urma| ﬂ||:l j|FLD-‘5"-T3 ﬂﬂ
| Tangent o =[Foats +] ¥|

To add new stream channels to the stream, the user can click on the “Add Channel’
button in the stream mapping editor. Then the user can select the desired usage for that stream,
and select the usage index and type.

To delete a stream channel, the user can click on the “X” button on the right of the channel.

31

The user can also add a Stream Mapping Reference to an already existing stream
mapping node in the workspace tree. To create a Stream Mapping Reference the user should
select a pass for which that reference is being created and right-click on it to view the pass
context menu. From that menu the user should select “Add Stream Mapping Reference”:

Enable [Disable Pass
Add Yariable
#dd Render State Block

Add Texture Object
Add Camera Reference
#dd Skream Mapping Reference

#dd Render Target
Mave Lip
Movve Do

Add MNoke

Renarme
Cuk

Copy
Paste

Delete

An empty stream mapping reference is then created. That reference is initially not linked
to any stream mapping nodes. The red line on the stream mapping reference icon denotes that

. B Stream Map Ref .
the reference isn’t correctly resolved. For Example: : To link a reference to a

stream mapping node the user has to right-click on the stream mapping reference node and
select a stream mapping node from the “References” list, or select “Rename” from its context
menu, then type the name of the stream mapping node that they want to link to.

If the user-typed stream mapping node name is found and resolved correctly, the stream mapping

reference node will have this icon: ~BWP Sr=am Mapping piooce note the arrow in the icon which
denotes that it is a reference rather than the actual stream mapping node.

Shader Editor Module

To edit a particular shader, the user can either double-click on the shader node or select
“Edit’ from the shader context menu. This will open the shader source editor, which is a tabbed
window used to edit shaders within an Effect. Each tab denotes a vertex (or pixel) shader per
Pass in the Effect. There is one shader source editor for all shaders within an Effect.

Depending on the language used for the shader, the High Level Shading Language editor

or the assembly shader editor will be automatically selected to edit that shader. The features of
each particular interface will be described in the sections below.

32

To compile the shader being edited, the user should click one of the u ﬂ W

(“Compile Shader”) buttons on the main toolbar or use the accelerator (F7 by default). Pressing
that button not only compiles the current shader, but it also internally saves the changes of the
code of from the shader editor into the shader node. If the user modified the shader text and then
tries to close the editor without committing (compiling) the changes, the user will be prompted to
commit changes for that particular shader to save the updated shader code.

33

Editing Assembly

Assembly shader editor window consists of two panes — the top pane is used to bind
RenderMonkey variable nodes to shader constant registers and the bottom pane is used to
directly edit the shader text.

L7 Shader Editor : Metal Effect =J2/Ed
|Skull Pass -
wsl psl]
Corskant J Marne | Initial Yalue A
ci Faf -
cl specular_color i1,1,1,1)
Lo diffuse_color i1,1,1,1) [
[w]
£ E m || }
p=.1.4 [
def =0, 0.0f, 0.0£, 0.0£, 1.0f
texcrd rl.rgb., t0 v env map
texcrd r1.rgb, t1 < L
texcrd r2.rgh, tZ # H
texcrd r3.rgb., t3 - H |
texcrd r4 .rgh, td4 <oV =
< H.L
dp3 r5. r2. rl
< offzet bazemap
mow rl.a, cl.a
add r0, =0, &
. Mol
dpd rd.r. rd. r3d
S« H.H (aka ||H||"2)
dp3 rd.g. 3. r3
mov rd. g, 1-rd . g
phase ol
ALU Op: 10 TexOp: ¥
Total Op: 17 Maw Op: 14

The constant store editor is a list view with three columns. Each row represents values
for one particular register. The first column, “Constant”, denotes the index of that register. The
second column, “Name”, shows the node that is linked to that register, or “...” if there isn’t a
variable linked to that register. The third column shows the initial value of variable node linked to
the register.

Binding a RenderMonkey variable node to a constant store register means that the
software will actually bind the internal values of the nodes directly to the register values. Within

34

RenderMonkey IDE, vector and colors nodes are represented by 4 different floats, scalars are
mapped to 4 floats having the same value, and matrices are represented by 16 floats.

To bind a RenderMonkey node to a register, the user should right-click on the field in the
“Name” column for the constant and select a variable node from the popup menu that will appear.
The popup menu will contain all variables that are within scope of the shader being edited. Once
a node is selected, the user will see its name appear in the “Name” column for the selected
register and the current values of the node will be displayed in the “Initial Value” column.

Constant | Mame | Inikial Yalue -
cl

cl specular_colf Vector B (,1,1,13

e diffuse_color ™ “Matrise ¥ inv_view_matrix

c3 wiew _makrix

c4 . . .

5 .wew;urn]_matrlx

i)

7

2

| Ve
4 >

To clear a constant store register, the user should select Clear menu option from the
popup menu for the register. The name of the variable previously linked to that node will be
replaced by “...” and the “Initial Value” column will be cleared.

Please note that if the user binds a matrix to a particular constant, then the three
constants below that constant will be overwritten with the rows of that matrix.

The source editor has support for customizable syntax coloring for pixel and vertex
shader assembly code. There is also full clipboard support for standard editing operations.

35

Editing the High Level Shading Language

The High Level Shading Language editor consists of three sections. The Ul widgets at

the top of the editor are used to manage shader parameters for H

LSL shaders. The text editor

control in the middle portion of the editor is used to view the declaration block of an HLSL shader

which contains parameter declaration. This editor pane is not

editable by the user — the

declaration block is solely controlled through the Ul widgets in the top portion of the editor. This is
necessary to ensure the proper mapping from RenderMonkey variable and texture objects to
High Level Shading Language parameters. The bottom pane is the editor widget to edit the actual

shader text.

7 Shader Editor : Simple Marble

=)= %)

[
Vertex Shader | Pixel Shader |

I+ Constant Editar

M ame
Warniable:

|Sing|e Pass

Regizster:
ﬂ |N|:|r'|e j Add | Fien'u:n-'e| Remaowe f-\lll

| =l | | |
Target: wi_1_1 - main

Samphnl

Entry Point

floatdzd wiew_proj_matriz: register(cl):
float =scale: registeri{cd):
floatd=zd wview_matrix: register{ch);

=truct VS_OUTPUT {
floatd Pos=:
floats pos:
floats normal:
floats viewVec:

POSITION;
TEXCOORDO ;
TEXCOORDL ;
TEXCOORDZ ;

¥

VS_O0UTPUT main(floatd Pos:
V5 _OUTPOT Out

POSITICH, float3 normal:

Out . Po= nuliwiew_proj_matriz. Pos):
Pazs pozition to fragment =shader
Cut . pos Fo= . 2Zvz * =cale;

Ewve—zpace lighting

Cut normal nul {wiew_matri=,
Out . viewVec = —-nul{view_natri=x,

normal):
Po=);

return Out

NORMALY{

36

To map a RenderMonkey variable node (a vector, a color, a matrix or a scalar node) the
user should left-click on the arrow button next to the variable’'s Name label:

e | K . This action opens up a popup menu containing a list of all variable
nodes within the scope of the shader being edited. The user should then select a variable node
from that popup menu:

v Caonstant Editar

Marne: Reqister:

“ariable: Ii Scalar ¥ | Add | Hemwe| Hemu:uve.-'-‘-.ll|
Sampler: li Yector b [
J Matriz » | | | |
Target: m Colar k FDInr
light_color l
Ka i

floatdzd view proj_matrix: reg k4

float scale: register{cd); K

floatd=d wiew_matrix: register =
global_ambient

At that point the label under the “Name” column will change to the name of the node that
was selected by the user. Next the user should click on the “Add” button to add that variable node
to the declaration block and map it internally as a shader constant. Or if the parameter is already
mapped to the shader and the declaration block, the user can click “Remove” to remove it from
the shader.

The user should be aware that the mapping process of RenderMonkey nodes to the
declaration block depends on the node being named exactly the same as the parameter in the
declaration block. IF the node that was mapped to the declaration block parameter was either
deleted or renamed, the user won’t be able to remove it from shader constant list or the
declaration block. In that case, the user can choose to remove all parameter declarations by
clicking on “Remove All” button. That action removes both the constant mapping and clears the
shader declaration block.

Similar process is used to bind RenderMonkey texture objects to the sampler
declarations in HLSL. The user should first create valid texture objects for each texture stage they
want to use with texture references. Then the user can follow the process for managing variable
mapping to map samplers by using the widgets in the “Sampler” row. Left-clicking on the arrow

Sampler: | C

button next to the sampler label () will open a list of available texture
objects that can be mapped as HLSL sampler objects. The name of the texture reference is used
as the name for the sampler. Then the user can either add or remove that sampler object in the
same manner as above. Same restrictions apply as far as managing nodes that are mapped to
sampler objects.

If the user wishes to bind a parameter to a particular register, they should select the
register by clicking on the register combo box and selecting from the list of Register:
registers available: Separate register sets exist for variables and sampler |fjgne

mapping.

................

The user should note that for High Level Shading Language parameter definition, the
RenderMonkey nodes they desire to map must be named within the constraints of the High Level

37

Shading Language, otherwise improper naming will result in compilation errors. Please refer to
the language manual to learn of valid naming conventions.

By default, an HLSL shader entry point is set to main. The user can change it by typing a different
|hmn

name in the entry point edit field: Entw Foint

Every HLSL shader must provide a compilation target. To do that, the user should select

Target:
from a list of available targets from the Target combo box: . The target

sets are separate for pixel and vertex shader — please refer to High Level Shading Language
documentation for explanation of each target value.

The bottom pane of the editor is used to edit the actual text of the shader. The shader
text must contain at least one function with the same name as the specified entry point for the
shader to compile. The shader text editor has High Level Shading Language customizable syntax
coloring.

HLSL Disassembly Window

Upon successful compilation of an HLSL Shader, the disassembly
code from the compiled shader is available to view. Selecting
“Show Disassembly Code...” from the shader editor’'s context menu
will bring up the Disassembly Window to view. The disassembler

L window shows code information such as the number of ALU
opy instructions (ALU Op #), the number of texture instructions used by
Paste the shader (Tex Op #), the total number of instructions generated
- by this shader (Tofal Op #) and the maximum number of

instructions allowed for a particular compile target (Max Op #). This
Save. information is very useful when targeting specific hardware with

Show Disassembly code

HLSL shaders as well getting the best performance out of your
shaders.

—| Effect Group 1 Effect 1 Single Pass Vertex Shader - Disassembly Code [=][0/E3
S wilew_proj_matrix: registers cl-cd (4 registers total) S
v= 1 1 il
dcl_position w0
mal 0, +0.x, <0
mad 2, w0.v, =1, =0
mad x4, wl.=, c2.
mad oFo=, w0 .w, 3. rd

o
AL Op: 4 TexOp:0
TotalOp: 4 tax Op: 128

38

Assembly or Compilation Errors

The source editor supports line highlighting for assembly or compilation errors. If a
particular shader has an error, it will be reported in the output module window. The user then can
double-click the error in the output window and the line containing the error will be highlighted in

the shader source editor for that shader:

Vertex Shader Pixel Shader
[Constant Edita

floatd lightDir: register(cl):
floatd color: registeri{cl);
zamnpler Noise: register(=0);

W

float noisy = texil({Holise. poz);

<« Ba=ze marble color
float marble = (0.2 + § * ab={noisvy — 0.5));

normal = normalize{normal):

add bad code here!

< Simple lighting

float diffuse = 0.5 % dot{lightDir., normal) + 0.5;

float specular = povizaturate(dot{reflect(-normalize(viewV¥ec). normal’
< We azsume darl parts of the marble reflects light better

float K= = =zaturate(l.1 - 1.3 *® marhle):
return diffu=e * marble * color + K= * specular;

floatd main(floatl pos: TEECOORDO, floatl normal: TEECOORDL, floatl wiewl|a

1
[v)
< 2
x|
rror X3000: syntax error: unexpected token 'bad’
)] 2]

Compile Active Shader (F&)

39

Editing Notes

To add a node note to an existing node, select the “Add Note” note option from the nodes
context menu:

Add Effect Group

Add Default EFfect r
Add Variable

Add Skream Mapping

Add Model

Add Renderable Texture

Add Moke

Rename
Paste

To edit a note the user should either double-click on the note node or select “Edit’ from
the right-click menu for that node. The note editor is a simple text editor, and can be used to add
documentation to specific workspace nodes.

E' my_note

This is my note!

Ok, Cancel

The contents of any note node added to the workspace will be displayed in the tooltip for
that node.

Editing Variables

To edit a variable the user should either double-click on the variable node or select “Edit’
from the right-click menu for that node.

Boolean Variables

Boolean variables do not actually have an associated editor, as the values are simply
modified through the “Boolean Value” option in the nodes context menu:

40

Artisk Yariable

Add Mote

Renarne
Zuk
Copy
Paste
Delete
Edit

Scalar Variables

Each scalar can be edited via the scalar editor module:

£ my_scalar

[D.04000 ~ ™ Clampfom | 100000 »| te | 1.00000 ~|
Ok, | Cancel |

The scalar can be edited by either directly typing the value in the main edit box, or by
interactively using a popup slider which will be in the same range as the clamping bounds
(regardless whether the user chooses to clamp the vector or not). The user can preview the
changes to the rendered effect by modifying the value of the scalar interactively in the preview
window, but at any point, the user can select “Cancel” to undo the changes to the variable. If “OK”
is pressed, the new value for the scalar variable is propagated to the database.

Vector Variables

Each vector can be edited via the vector editor module:

E my_vector

¥ 0.00000 ~| [Clamp fror|-10.00000 =} ta | 10.00000 -
e D-DDDDDH [Keep [% v, 2] components normalized

z 0.00000 -

A 1.00000 -

k. | Cancel

Each vector component can be edited by either directly typing the value in the component
edit box or by interactively using a popup slider for each component. The sliders’ ranges will be

41

the same as the clamping bounds for the vector (regardless whether the user chooses to clamp
the vector or not). The user may also select to keep the vector normalized by selecting “Keep
vector normalized’ check box. The user can preview the changes to the rendered effect by
modifying the value of the vector interactively in the preview window, but at any point, the user
can select “Cancel” to undo the changes to the variable. If “OK” is pressed, the new value for the
vector variable is propagated to the database.

Matrix Variables

Each matrix variable can be edited via the matrix editor module:

£ my_matrix
| fooood ~| | oooooo.l | 0O00OD .| | 0.00000 -
| nooooo -l | toooo0 - | 000000 .| | 0.00000 -
| nooooo - | 000000 - | 100000~ | 0.00000 -
| 000000 -f | 000000~ | 000000 - | 1.00000 -
Set to Identily Matrix |
[ok] concel |

Each matrix component can be edited by either directly typing the value in the component
edit box or by interactively using a popup slider for each component. The slider range is preset to
be between [-100.0; 100.0], however, typing a value outside of that range expands the range to
that value. The user can also set the matrix to an identity matrix by clicking the appropriately
named button. Similarly to the other variables, the user can select to keep the changes to the
variable values or to dismiss it by selecting either “OK” or “Cancel” variables.

Color Variables

Each color variable can be edited via the color picker module:

42

E

E my_color

—=

CHCI
G e
Blue: 52 | 1
&lpha |25 |

Color Type: |RGE «| [Flaating Paint
Ok, | Cancel |

—=

The user can edit color using either RGB or HSV mode by either directly typing the
values in the appropriate edit boxes for each component (R, G, B, Aor H, S, V, A) or interactively
selecting color from the color wheel or color sliders for each component or modify the intensity of
the color being edited by using the vertical intensity slider. The value of the color is shown in the
color swatch at the top left corner of the color picker. Similarly to the other variables, the user can
select to keep the changes to the color variable or to dismiss them by selecting either “OK” or
“Cancel” variables.

Model Variables

To edit a geometry model variable, the user should double-click on the variable node and
when a file dialog opens up, the user can select the file for the geometric model that they want to
load. Currently RenderMonkey supports .3DS and .X model file format.
Texture, Cubemap and Volume Texture Variables

To use texture-based variables, the user has to first create a texture variable using “Add
Variable” dialog in the desired location of the workspace. That texture variable is used to select a

file from which to load the texture. To actually use a texture within a Pass, the user should select
the desired Pass and select “Add Texture Object” menu option:

43

Enable | Disable Pass
Add Yariahle
Add Render State Block

Add Texture Object
Add Camera Reference

Add Render Target
Move Up
Mavve Dawin

Add Maoke

Renare
Zuk
Copy
Paste
Delete

This creates an empty texture object. Next the user should add a texture reference to a
texture variable in the workspace. To do that, the user should select “Add Texture Reference”
from the right-click menu for the texture object:

Add Texture Reference
Add Mote

Renarne
Zuk
Copy
Paste
Delete
Edit

This creates an empty texture reference ﬂ To actually create the reference
to a texture variable the user should type the name of the variable they want to reference. If a
valid texture variable will be successfully found, then the red line across the texture reference will
be removed. Red line across the texture reference icon denotes that the texture variable wasn’t
successfully referenced.

44

The user should also specify texture state values (filtering, clamping, etc) for a particular
texture reference node. To do that, the user can launch texture editor by double-clicking on a
valid texture reference node.

£ RenderMonkey Texture Editor =Jo)E

Single Pass

hatch_0: hatch_D hatch_1: hatch_1 hatch_2: hatch_3 hatch_3: hatch_3 hatch_4: hatch_4
. .
Current Texture: [Stage 0] hatch_0: hatch 0

State | Walue Incaming il
ADDRESSU

ADDRESSY

ADDRESSW

ALPHAARGO Clear

:tg:g:ggé ¢~ D3DTA_DIFFUSE

ALFHAR (™ D3DTA_CURRENT

EoRb R Goon @ D3DTA_TEXTURE

BUMPENYLOFFSET (" D3DTA_TFACTOR

BUMPENYLSCALE ("~ D3DTA_SPECULAR

BUMPERYMATOO (™ DIDTA_TEMP

BUMPERYMATOL

gﬂmggmmm [D3DTA_COMPLEMENT

OLORARAD | DIDTA_ALPHAREPLICATE -

The texture editor has tabs for each individual Pass within an Effect. The top of the
texture editor contains a list of texture references within the selected Pass. By clicking on a
texture icon the user can select to view and set texture states for that texture. To set a particular
state, the user should |eft click on the Value field next to the state they are trying to edit and either
select a value from the predefined set of values for that state or type of a value if none was
provided.

Also note that only the texture objects with valid texture references will have T jcon ora
thumbnail image. If the texture object’s texture reference isn’t correctly linked, then that object will

be displayed with g icon.

Renderable Texture Support

The user can render output of any given Pass to a texture and then sample the contents
of that texture in any other Pass. To add that functionality to your workspace, here is the
sequence of steps you must follow:

1. Create a renderable texture at any point in the workspace. Only one Pass can render
output to that texture at a time.

To add a renderable texture, click on any node that you would like to add it to and select
“Add Renderable Texture” from the context menu that appears at that point:

45

v Set as Active EFfect

Add Camera

Add Pass

Add Yariable

Add Stream Mapping
Add Model

Add Renderable Texture

Add Make

Rename
uk
Copy
Paste
Delete

2. You will see a new node appear in the tree with this icon: £ This node is the renderable
texture node that you will link later to a render target and to a texture object to sample

from this renderable texture.

46

4.

5.

Next you need to add a render target to the Pass that is going to output to the renderable
texture. Select the Pass node and right-click on it to select the context menu for that Pass
— choose “Add Render Target” to add a new render target (the node will have this icon &
next to it once it's created):

Enable [Disable Pass
Add Yariable
#dd Render State Block

&dd Texture Object
add Camera Reference

&dd Render Target
Maove Lip
Move Down

&dd Moke

Renarne
Zuk
Copy
Paste
Delete

Next you must link the render target node to the renderable texture that you've created.
To do that, you can either rename the render target node to exactly the same name as
the renderable texture node that you want to link it to, or you can right-click on the render
target node and select a node to reference from a context menu that will appear:

Reference Mode... render Texture
Render To Screen
Add Moke

Renarne
Zuk
Copy
Paste
Delete

At this point the output of the Pass that owns the render target node is drawn to the
renderable texture.

Next, let’s link the renderable texture to a Pass that is going to sample from it. To do that,
you must first create a texture object and a texture reference within that Pass (see the
section on managing textures above). Once a texture reference exists, you must link it to
the renderable texture by either renaming the texture reference node to the exactly the

47

same name as the renderable texture or by right-clicking on the texture reference node
and selecting the renderable texture you want to link it to from the Reference Node menu:

Reference Mode.., # renderTexture
"

Add Matke

Rename
Zuk
Copy
Paste
Delete

7. At this point you can use the texture object as you would normally use it in your shader
(assembly or HLSL).

Editing Renderable Texture

To edit a renderable texture node, double-click on the node itself & to open the
renderable texture editor module:

£ renderTexture
Dimensions
Wfidth 513
Height: A2

| Usze viewport dimenzsions

v Auto-Generate Mip Map

— Format

|ABREGEES -l

In that editor you can change the dimensions of the renderable texture: to change either
width or height of the texture, type the integer dimension that you wish into the appropriate edit
box and press “Enter” to propagate the changes and create new renderable texture. You may
also bind the texture to use the dimensions of current viewport by checking “Use viewport
dimensions” button. Selecting “Auto-Generate Mip Map” will enable the mip-map chain to be auto
generated during the rendering process.

To change the format of the renderable texture, the user can select from a list of
predefined formats by selecting them from the Format combo box control.

48

Editing Render Target

To edit a render target node, the user should double-click on the node itself (&) to open
the render target editor window, or select “Edit” from the node right-click context menu:

IE renderTarget

— Fender target

¥ Enable color clear

Clear calar: [m—

i~ Depth buffer

v Enable depth clear

Depth clear value: 1.00000 -

From that editor, the user can select whether to clear the renderable texture by checking
or unchecking “Enable color clear” button. If the user chose to clear the texture, they can select
the color they wish to clear it to by clicking on the Clear Color button and selecting the color from
the dialog that will appear. The user can also select whether to enable depth clearing by checking
of unchecking ‘Enable depth clear” button. If depth clearing is enabled, the user can select the
value used.

To have a pass render to the screen instead of into a renderable
texture, the user can select the “Render To Screen” option from the

v Render To Screen render target context menu. When rendering to the screen instead of
into the renderable texture, the render target icon will change from the

Add Mote . . = L

standard icon (&), to a special icon ([#)) to indicate the change.

Renarne

Zut

Copy
Paste

Delete

Editing Camera Node Settings

& Camera nodes and ﬁ“Camera Reference nodes are used to specify view orientations
for each rendering pass. Camera nodes are placed under an effect, and the camera node
marked as “Active” will be manipulated by the Preview window trackball. A Camera Reference is
added to a Pass to indicate that the referenced camera settings should be used when rendering
that pass. To add a Camera node to an effect, right click the effect node and select “Add
Camera” from the context menu:

49

v Set as Active EFfect
Add Camera
Add Pass
Add Variable
Add Stream Mapping
Add Model
Add Renderable Texture

Add Matke

Rename
Cuk
Copy
Paste
Delete

The “Active” camera node is marked with a small check E. For Example: g Camera T
make a specific Camera node “Active”, right click the camera node, and select “Set Active” from
the context menu:

W Sek Active Camera
Add Moke

Renarne
Zuk
Copy
Paste
Delete
Edit

To enable a camera node to affect a specific rendering pass, a Camera Reference must
be added to that pass. To add a camera reference to a pass, select “Add Camera Reference”
from the pass context menu. To ensure the camera reference is referencing the desired Camera,
select the appropriate camera node from the camera reference’s context menu:

Reference Mode.., F Camera_1
) Camera_z2

Use Active Camera
Camera_3
Add Moke

Rename
Cuk

Copy
Paste

Delete

To edit a camera node, double click on the camera node itself (’%‘), or select “Edit” from
the right-click context menu:

50

£ Camera

Camera Position: |n.nnnnd j |n.nnunn j |-2nu.nnnnn j
Laok At Wectar: |n. o000 j |n.nnunn j |1 00000 j
Up Vectar: |n. 00000 j |1 00000 j |n.nnnnn j

FiOY: 4500000 -
Mear Clip Plane: 1.00000 -
Far Clip Plane 1000.0000 -

k. | Canicel

The Camera Editor allows the user to manipulate the Camera Position, the Look At
vector, the Up vector, the Field Of View (FOV), and the Near / Far Clip Planes values. If the
camera editor for the active camera is opened and the user is manipulating the trackball in the
preview window, the values will be updated after the trackball has changes its values.

51

Artist Editor

One of the problems that shader developers face in production is how to present the
shaders to the 3D artists to allow the artists to experiment with the shader parameters to achieve
desired Effects. RenderMonkey’s solution for this problem is the Artist Editor module combined
with the Art tab in the workspace view.

A shader developer can select certain variables in the shader Effect Workspace to be
flagged as “artist-editable” variables. To do that, the user selects “Artist Variable” from the right-
click menu for the desired variable node and a small yellow flag icon will be overlaid over the icon
for that variable. Then the shader developer can give the Effect Workspace with their shaders to
the artists. The artist can select the Art tab from the workspace view to only view artist variables
present in the workspace. For added convenience the artist can edit artist variables of supported
types in the artist editor module. Currently the supported types for the artist editor are vectors,
scalars and colors, however, any variable can be flagged as artist variable and accessed from the
Art workspace tab.

To open the artist editor, the user can either click the 'ﬁ button on the application
toolbar, or select “Artist Editor’ from View menu in the main application menu.

|8 ATT Renderllonkev DirectX 9.0: Reflections Refractions.rfx - [DirectX 9.0 Preview= Ocean Water (ASM) effect]

Ml Artist Editor

Depth Attenuated Reflection | Rehaction | Ocean Ocean'water | ASM]|

[+ Colors

dout s ——
i s _—

specular_color

I

A

The artist editor is a tabbed window with tabs for each Effect Workspace, Effect Group,
Effect or Pass that contains artist editable variables. If the node contains no artist editable
variables of supported types, it won’t appear as the tab in the artist editor.

52

Artist editable variables are arranged by their types in groups: color, vector and scalar groups.

e

Each group can be expanded or collapsed by clicking on button within the group.

1 Artist Editor

5

Depth Atteruated Feflection Hefractiuni Ocean Ocean’water [A5M) |

[+ Colors

[+ ¥Yectors

|cloud_velociy | [000500 -| [002000 -] [T 000400 | |

3 P : | Y

2

[ae]

53

Editing variables in the artist editor module
Colors

Each color variable has three related controls — a color swatch button for opening the full color
picker module, a hue slider and an intensity slider:

cpecularcolor] I T T

If you click on the || button, you will get an expanded set of controls for editing color with more
precision, as shown in Figure 42.

Q

rlrz - T

cl175 N

elzes N

Aless | |
[RGi v |

specular calaor

Vectors

Each vector variable has five related controls — a label button that opens up the full vector editor,
and four components edit boxes with popup slider buttons for editing each vector component
interactively:

cloudOvelocity| | 000500 -] [002000 - [-noo4o0 -| [0.00200 -|

. cloud welocity .)
If the user clicks on the button for a particular vector, they will see an expanded
set of controls for editing vectors with more precision and control:

54

cloud0 velocity ~ ’wj | Clamp from le
g - m
Fi lmj [Mormalize (x v, 2)
W

Scalars

Each scalar variable has two related controls — a label button which opens up the full
scalar editor and an edit box with a popup slider button for editing the slider value directly.

shininessFactor! I:I.IIIIIII:IIIII]L]

..

If the user clicks on the button, they will see an expanded set of
controls for editing scalar variables in the artist editor interface:

shininessFactor 0.00000 ~| [Clampfrom | -1.00000 -| to [1.00000 ~|

55

RenderMonkey Support and Feedback

As with all the tools and samples provided by ATI, we welcome feedback from the
developers who spend every day “in the trenches” solving real problems.

ATI is committed to providing you with the tools you need to make your job easier. In
order to do this, we need you to tell us what works and what doesn’t. What additions or
enhancements would you like to see? What additional problem area exists that we’re not
currently helping with?

Please help us to help you by providing as much feedback as possible to

devrel@ati.com.

56

mailto:devrel@ati.com

	RenderMonkey Introduction
	Interface overview
	Application Menu
	The File menu
	The Edit menu
	The View menu
	The Window menu
	The Help menu

	Application Toolbar
	RenderMonkey File Format
	Workspace View
	Managing Effect Groups
	Managing Effects
	Managing Variables
	Predefined Variables
	Managing Render Passes
	Managing Pixel and Vertex Shaders
	Managing Render State Block

	Application Preferences
	Cycle time for pre-defined ‘time’ variable
	Auto Refresh
	Default Directories
	Rendering Refresh Rate
	Reset Camera on Effect Change

	Modules
	Preview Module
	Output Module
	Stream Mapping Module
	Shader Editor Module
	Editing Assembly
	Editing the High Level Shading Language

	Editing Notes
	Editing Variables
	Scalar Variables
	Vector Variables
	Matrix Variables
	Color Variables
	Model Variables
	Texture, Cubemap and Volume Texture Variables

	Renderable Texture Support
	Editing Renderable Texture
	Editing Render Target

	Editing Camera Node Settings
	Artist Editor
	Editing variables in the artist editor module
	Colors
	Vectors
	Scalars

	RenderMonkey Support and Feedback

