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Figure 1 - A screenshot of the Fixed Function Shader program with a closeup of the state 
settings shown to the right. 
 
Introduction 
 
The High Level Shading Language (HLSL) introduced DirectX® 9 allows developers to 
write complex shaders in significantly less time than using earlier, low-level assembly 
languages. This document describes the implementation of parts of the fixed function 
pipeline using an HLSL vertex shader. It serves as a starting point for developers writing 
shaders that, in part, mimic portions of the fixed function pipeline. This white paper is 
also a valuable source on compiler issues and general information concerning HLSL 
programming. The HLSL compiler included in the DirectX 9 SDK Update (Summer 
2003) is the first version available which supports compilation to asm flow-control 
instructions and is necessary for this analysis.  Hence, if you wish to download our 
sample application and rebuild it, you will need this SDK or a later version. 
 
The shader discussed in this document includes multiple directional, point and spot light 
sources, vertex fog, tweening, and automatic texture coordinate generation. In addition, a 
“diff” mode is available to compare the output of the “fixed function” shader with that of 
the fixed function code path. The source code for this project is publicly available on the 
ATI Developer Relations web site (http://ati.com/developer).  
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Application Overview 
 
The FixedFuncShader application renders a mesh using either our HLSL shader or the 
standard DirectX 9 fixed function API. The code is written is C++ and HLSL. It is based 
on the CD3DApplication class provided with the Microsoft DirectX 9 SDK.  
 
As shown in Figure 1, the state settings used to render the mesh are displayed on the 
upper-left corner of the window. The state can be changed by using the keyboard arrow 
keys, or by loading a state file (*.s) from disk. 
 
State files (*.s) 
 
State files can be loaded from the command line by specifying “/s:file.s”. They can 
also be loaded from the State menu or by pressing F9. States can be saved to disk from 
the State menu or by pressing F10. 
 
When states are saved to disk, the mesh filename and camera information are also stored. 
When loading a state file at a later time, one may want to also load the mesh that is 
associated with that state as well as the viewpoint at the time the state was saved. This 
can be accomplished by selecting “Load state w/ mesh” from the State menu or by 
pressing Alt-F9. This can be very useful when analyzing any discrepancies between 
rendering done with the HLSL shader (which you can feel free to modify) and the fixed 
function API. 
 
Mesh files (*.x) 
 
Mesh files can be loaded from the command line by specifying “/x:file.x”. They can 
also be loaded from the File menu or by pressing F11. For tweening to work, the current 
mesh filename must end with “1.x”. There must also be a file ending with “2.x” in the 
same directory (e.g., the dolphin1.x and dolphin2.x files provided with the accompanying 
application). 
 
Display modes 
 
There are four display modes which can be selected from the View menu: 
 

• Programmable pipeline: Uses our HLSL shader. 
• Fixed function pipeline: Uses the fixed function code path. 
• Both: Displays both of the above side-by-side. 
• Diff: Displays a color-coded pixel “diff” between the programmable and fixed 

function pipelines. 
 
Diff mode details 
 
If diff mode is enabled, a pixel shader computes the distance between the color vectors of 
the output of both the programmable and fixed function pipeline. 
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If the difference is zero, the shader outputs a black pixel. Otherwise, if the difference is 
smaller than or equal 1/255.f then the shader outputs a green pixel. If the difference is 
larger than 1/255.f, then the shader interpolates between yellow and red (red meaning 
higher error). 
 
Due to what we believe are numerical precision issues (e.g., dword vs. float4), we often 
get small errors in our shader. The “green” errors can be turned on and off from the View 
menu or by pressing D. 
 
In diff mode, a histogram of all non-zero pixels is 
displayed on the lower-right of the window. The 
percentage of zeroes, the average (avg), root-
mean-square (rms), min and max are also 
displayed. The histogram to the right shows that 
there were four non-zero samples, the max being 
approximately 0.22. 
 
The FixedFuncShader.fx effects file 
 
D3DX Effects files encapsulate vertex shaders, pixel shaders, global variables and 
techniques in a single source. Techniques specify the rendering state and which shaders 
should be used in each pass. The main application source code simply sets the technique. 
After that, all primitives that are sent to the hardware are rendered using these settings. 
 
We will now first step through our effects file, with additional comments where 
necessary. Subsequently, we will discuss other issues related to our HLSL shader. 
 
First, the data structures that hold the state data are defined. These global variables are 
placed in the constant store and are accessed by the vertex shader. Note that the 
bSpecular variable is explicitly stored in a bool register. Since we will compile this 
shader using vs_2_0, this causes the compiler to perform static flow control for 
if(bSpecular) instructions. The same applies to the bTweening and bFogRange 
variables.  
 
#define PI  3.14f 
 
//this file contains light, fog, and texture types 
#include "FixedFuncShader.fxh" 
 
// Structs and variables with default values 
 
float4 vMaterialColor = float4(192.f/255.f, 128.f/255.f,  
                               96.f/255.f, 1.f); 
float fMaterialPower = 16.f; 
 
float4 vAmbientColor = float4(128.f/255.f, 128.f/255.f,  
                              128.f/255.f, 1.f); 
 
bool bSpecular : register(b0) = false; 
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//tweening settings 
bool bTweening : register(b2) = false; 
float fTweenFactor = 0.f; 
 
The fog settings are defined next: 
 
//fog settings 
int iFogType = FOG_TYPE_NONE; 
float4 vFogColor = float4(0.0f, 0.0f, 0.0f, 0.0f); 
float fFogStart = 10.f; 
float fFogEnd = 25.f; 
float fFogDensity = .02f; 
bool bFogRange : register(b4) = false; 
 
All three fog types are supported (linear, exp, and exp2). To enable fog, iTexFogType 
can be set to one of: 
 
//from FixedFuncShader.fxh 
#define FOG_TYPE_NONE            0 
#define FOG_TYPE_EXP             1 
#define FOG_TYPE_EXP2            2 
#define FOG_TYPE_LINEAR          3 
 
Then, texture coordinate generation settings are defined.  
 
//texture coordinate generation settings 
int iTexType = TEX_TYPE_NONE; 
int iTexGenType = TEXGEN_TYPE_NONE; 
 
iTexType can either be set to TEX_TYPE_NONE, which disables textures, or 
TEX_TYPE_CUBEMAP, which loads a simple cube map texture. iTexGenType can either be 
set to one of the following: 
 
//from FixedFuncShader.fxh 
#define TEXGEN_TYPE_NONE                          0 
#define TEXGEN_TYPE_CAMERASPACENORMAL             1 
#define TEXGEN_TYPE_CAMERASPACEPOSITION           2 
#define TEXGEN_TYPE_CAMERASPACEREFLECTIONVECTOR   3 
 
TEXGEN_TYPE_NONE disables texture coordinate generation and simply passes the input 
texture coordinates on to the rasterizer. The other three modes are the texture coordinate 
generation modes supported by the fixed function API. 
 
Next comes the light data. All light data is encapsulated in a single structure. This 
structure is analogous to the D3DLIGHT9 light structure of DirectX. It contains all the data 
necessary for directional, point, and spot lights. By default, the compiler places all data 
members of this structure in individual constant float4 registers, with each data member 
taking up 128 bytes (4 floats). This is true even of the scalar float members of the 
structure. We have tightly packed the attenuation and spot light terms. One can imagine 
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packing this structure even tighter if one wants to sacrifice readability for additional float 
constant store space. 
 
struct CLight 
{ 
   int iType; 
   float3 vPos; 
   float3 vDir; 
   float4 vAmbient; 
   float4 vDiffuse; 
   float4 vSpecular; 
   float  fRange; 
   float3 vAttenuation; //1, D, D^2; 
   float3 vSpot;        //cos(theta/2), cos(phi/2), falloff 
}; 
 
The iType of the light can be one of: 
 
//from FixedFuncShader.fxh 
#define LIGHT_TYPE_NONE          0 
#define LIGHT_TYPE_POINT         1 
#define LIGHT_TYPE_SPOT          2 
#define LIGHT_TYPE_DIRECTIONAL   3 
 
Then, the additional light settings are declared. These settings are used by the for loops 
that loop over the lights. iLightDirIni is the index to the first directional light in the 
light array. iLightDirNum is the number of directional lights (all lights of the same type 
are placed consecutively in the array). Point and spot light variables are defined similarly. 
 
//initial and range of directional, point and spot lights within the 
//light array 
int iLightDirIni; 
int iLightDirNum; 
int iLightPointIni; 
int iLightPointNum; 
int iLightSpotIni; 
int iLightSpotNum; 
 
Five lights are initialized. The number of lights is configurable and can be changed in the 
FixedFuncShader.fxh file. The number of lights that this shader can operate on is limited 
only by the size of the constant store space due to the use of looping. (The limit for our 
shader is 24 lights due to the other variables that are also in the constant store.) 
 
CLight lights[5] = {                         //NUM_LIGHTS == 5 
   { 
      LIGHT_TYPE_DIRECTIONAL,                //type 
      float3(0.0f, 0.0f, 0.0f),              //position 
      float3(2.0f,-3.0f, 4.0f),              //direction 
      float4(0.0f, 0.0f, 0.0f, 0.0f),        //ambient 
      float4(1.0f, 1.0f, 1.0f, 1.0f),        //diffuse 
      float4(1.0f, 1.0f, 1.0f, 1.0f),        //specular 
      1000.f,                                //range 
      float3(1.f, 0.f, 0.f),                 //attenuation 
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      float3(.999f, .996f, 1)                //spot (theta=PI/50, 
                                             //phi=PI/20) 
   },  
   //Note: The remaining four lights go here (see source code). 
}; 
 
Next, the transformation matrices are declared. These are initialized from the application 
source code as described in the “Interfacing with the effects file” section. 
 
//transformation matrices 
float4x4 matWorldViewProj  : WORLDVIEWPROJ; 
float4x4 matWorldView      : WORLDVIEW; 
float4x4 matWorld          : WORLD; 
float4x4 matWorldViewIT; 
float4x4 matViewIT; 
 
Then, the output structures of the vertex shaders and its helper functions are declared. 
Note that specular color is output separately from diffuse. This is important to match the 
fixed function pipeline; diffuse and specular are saturated independently prior to vertex 
fog processing. 
 
struct VS_OUTPUT 
{ 
   float4 Pos           : POSITION; 
   float4 Color         : COLOR0; 
   float4 ColorSpec     : COLOR1; 
   float4 Tex0          : TEXCOORD0; 
   float  Fog           : FOG; 
}; 
 
struct COLOR_PAIR 
{ 
   float4 Color         : COLOR0; 
   float4 ColorSpec     : COLOR1; 
}; 
 
Next, all the functions for light computation are defined.  
 
//--------------------------------------------------------------------- 
// Name: DoDirLight() 
// Desc: Directional light computation 
//--------------------------------------------------------------------- 
COLOR_PAIR DoDirLight(float3 N, float3 V, int i) 
{ 
   COLOR_PAIR Out; 
   float3 L = mul((float3x3)matViewIT, -normalize(lights[i].vDir)); 
   float NdotL = dot(N, L); 
   Out.Color = lights[i].vAmbient; 
   Out.ColorSpec = 0; 
   if(NdotL > 0.f) 
   { 
      //compute diffuse color 
      Out.Color += NdotL * lights[i].vDiffuse; 
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      //add specular component 
      if(bSpecular) 
      { 
         float3 H = normalize(L + V);   //half vector 
         Out.ColorSpec = pow(max(0, dot(H, N)), fMaterialPower) *  
                         lights[i].vSpecular; 
      } 
   } 
   return Out; 
} 
 
//---------------------------------------------------------------------
// Name: DoPointLight() 
// Desc: Point light computation 
//---------------------------------------------------------------------
COLOR_PAIR DoPointLight(float4 vPosition, float3 N, float3 V, int i) 
{ 
   float3 L = mul((float3x3)matViewIT, normalize((lights[i].vPos- 
                  (float3)mul(matWorld,vPosition)))); 
   COLOR_PAIR Out; 
   float NdotL = dot(N, L); 
   Out.Color = lights[i].vAmbient; 
   Out.ColorSpec = 0; 
   float fAtten = 1.f; 
   if(NdotL >= 0.f) 
   { 
      //compute diffuse color 
      Out.Color += NdotL * lights[i].vDiffuse; 
 
      //add specular component 
      if(bSpecular) 
      { 
         float3 H = normalize(L + V);   //half vector 
         Out.ColorSpec = pow(max(0, dot(H, N)), fMaterialPower) *  
                         lights[i].vSpecular; 
      } 
 
      float LD = length(lights[i].vPos- 
                        (float3)mul(matWorld,vPosition)); 
      if(LD > lights[i].fRange) 
      { 
         fAtten = 0.f; 
      } 
      else 
      { 
         fAtten *= 1.f/(lights[i].vAttenuation.x +  
                   lights[i].vAttenuation.y*LD +  
                   lights[i].vAttenuation.z*LD*LD); 
      } 
      Out.Color *= fAtten; 
      Out.ColorSpec *= fAtten; 
   } 
   return Out; 
} 
 
//---------------------------------------------------------------------
// Name: DoSpotLight() 
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// Desc: Spot light computation 
//---------------------------------------------------------------------
COLOR_PAIR DoSpotLight(float4 vPosition, float3 N, float3 V, int i) 
{ 
   float3 L = mul((float3x3)matViewIT, normalize((lights[i].vPos- 
                  (float3)mul(matWorld,vPosition)))); 
   COLOR_PAIR Out; 
   float NdotL = dot(N, L); 
   Out.Color = lights[i].vAmbient; 
   Out.ColorSpec = 0; 
   float fAttenSpot = 1.f; 
   if(NdotL >= 0.f) 
   { 
      //compute diffuse color 
      Out.Color += NdotL * lights[i].vDiffuse; 
 
      //add specular component 
      if(bSpecular) 
      { 
         float3 H = normalize(L + V);   //half vector 
         Out.ColorSpec = pow(max(0, dot(H, N)), fMaterialPower) *  
                         lights[i].vSpecular; 
      } 
 
      float LD = length(lights[i].vPos- 
                        (float3)mul(matWorld,vPosition)); 
      if(LD > lights[i].fRange) 
      { 
         fAttenSpot = 0.f; 
      } 
      else 
      { 
         fAttenSpot *= 1.f/(lights[i].vAttenuation.x +  
                       lights[i].vAttenuation.y*LD +  
                       lights[i].vAttenuation.z*LD*LD); 
      } 
 
      //spot cone computation 
      float3 L2 = mul((float3x3)matViewIT, -normalize(lights[i].vDir)); 
      float rho = dot(L, L2); 
      fAttenSpot *= pow(saturate((rho - lights[i].vSpot.y)/ 
                        (lights[i].vSpot.x - lights[i].vSpot.y)),  
                        lights[i].vSpot.z); 
 
      Out.Color *= fAttenSpot; 
      Out.ColorSpec *= fAttenSpot; 
   } 
   return Out; 
} 
 
Then, the vertex shader is defined. It first checks whether tweening is enabled. If so, it 
properly blends the positions based upon the tween factor. 
 
//---------------------------------------------------------------------
// Name: vs_main() 
// Desc: The vertex shader 
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//---------------------------------------------------------------------
VS_OUTPUT vs_main (float4 vPosition  : POSITION0,  
                           float4 vPosition2 : POSITION1,  
                           float3 vNormal    : NORMAL0,  
                           float3 vNormal2   : NORMAL1,  
                           float2 tc         : TEXCOORD0) 
{ 
   VS_OUTPUT Out = (VS_OUTPUT) 0; 
 
   if(bTweening) 
   { 
      vPosition = (1.f-fTweenFactor) * vPosition +  
                   fTweenFactor * vPosition2; 
      vNormal   = (1.f-fTweenFactor) * normalize(vNormal) +  
                   fTweenFactor * normalize(vNormal2); 
   } 
 
After that, it normalizes the normal, and converts vectors to view space, which is 
necessary for proper light, fog and texture coordinate computation. Strictly speaking, this 
normalization is optional and would be controlled by the D3DRS_NORMALIZENORMALS 
render state in the fixed function case, but we have chosen to hard code this 
normalization for simplicity. 
 
   vNormal = normalize(vNormal); 
   Out.Pos = mul(matWorldViewProj, vPosition); 
 
   float3 P = mul(matWorldView, vPosition); //position in view space 
   float3 N = mul((float3x3)matWorldViewIT, vNormal); //normal in view      
   float3 V = -normalize(P); //viewer 
 
Next, the shader performs texture coordinate generation. Note that since static flow 
control is only available on boolean constants, all code paths must be taken. Here, to 
minimize the number of instructions, the texture coordinates are computed by linearly 
interpolating all the possible settings. 
 
   //automatic texture coordinate generation 
   Out.Tex0 = float4((2.f * dot(V,N) * N - V) *  
            (iTexGenType == TEXGEN_TYPE_CAMERASPACEREFLECTIONVECTOR) 
            + N * (iTexGenType == TEXGEN_TYPE_CAMERASPACENORMAL) 
            + P * (iTexGenType == TEXGEN_TYPE_CAMERASPACEPOSITION), 0); 
   Out.Tex0.xy += tc * (iTexGenType == TEXGEN_TYPE_NONE); 
 
Finally, the light computation is performed. One loop is used for each light type 
(directional, point, and spot). Point and spot lights can be easily combined in order to 
reduce the total shader instruction count (only if the light is a spot light, the spot cone 
factor would be multiplied by the resulting color). In fact, prior to optimization, we had to 
merge these two light types in one loop to stay within the 256 instruction limit. 
 
   //directional lights 
   for(int i = 0; i < iLightDirNum; i++) 
   { 
      COLOR_PAIR ColOut = DoDirLight(N, V, i+iLightDirIni); 
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      Out.Color += ColOut.Color; 
      Out.ColorSpec += ColOut.ColorSpec; 
   } 
 
   //point lights 
   for(int i = 0; i < iLightPointNum; i++) 
   { 
      COLOR_PAIR ColOut = DoPointLight(vPosition, N, V,  
                                       i+iLightPointIni); 
      Out.Color += ColOut.Color; 
      Out.ColorSpec += ColOut.ColorSpec; 
   } 
 
   //spot lights 
   for(int i = 0; i < iLightSpotNum; i++) 
   { 
      COLOR_PAIR ColOut = DoSpotLight(vPosition, N, V,  
                                      i+iLightSpotIni); 
      Out.Color += ColOut.Color; 
      Out.ColorSpec += ColOut.ColorSpec; 
   } 
 
Next, the light is multiplied by the material color and saturated. Note that while pixel 
shaders have a saturate operation, vertex shaders do not. As a result, if we only need to 
check against one side, it is better to just perform the min or max operation, as it saves 
one instruction. 
 
   //apply material color 
   Out.Color *= vMaterialColor; 
   Out.ColorSpec *= vMaterialColor; 
 
   //saturate 
   Out.Color = min(1, Out.Color); 
   Out.ColorSpec = min(1, Out.ColorSpec); 
 
Finally, fog is computed using the same linear interpolation approach of the texture 
computation. 
 
   //apply fog 
   if(bFogRange) 
      d = length(P); 
   else 
      d = P.z; 
   Out.Fog = 1.f * (vfog.iType == FOG_TYPE_NONE) 
             + 1.f/exp(d * vfog.fDensity)  
               * (vfog.iType == FOG_TYPE_EXP) 
             + 1.f/exp(pow(d * vfog.fDensity, 2))  
               * (vfog.iType == FOG_TYPE_EXP2) 
             + saturate((vfog.fEnd - d)/(vfog.fEnd - vfog.fStart))  
               * (vfog.iType == FOG_TYPE_LINEAR); 
   return Out; 
} 
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Next, we describe the techniques used for rendering. Two techniques are defined. The 
first technique follows the fixed function code path and just sets the state variables 
appropriately (no vertex shaders or pixel shaders are used).  
 
// Techniques 
 
//the technique to set the state for the fixed function shader 
 
technique basic 
{ 
   pass P0 
   { 
      AMBIENT = (vAmbientColor); 
      SPECULARENABLE = (bSpecular); 
      FOGENABLE = (vfog.iType != FOG_TYPE_NONE); 
      FOGCOLOR = (vfog.vColor); 
   } 
} 
 
The second technique uses our HLSL “fixed function” vertex shader. It does not need to 
set all the state variables, since the shader itself queries those. It just needs to set the 
specular and fog settings, so that the specular color and fog components output from the 
shader are used. 
 
//technique for the programmable shader (simply sets the vertex shader) 
technique basic_with_shader 
{ 
   pass P0 
   { 
      SPECULARENABLE = (bSpecular); 
      FOGENABLE = (vfog.iType != FOG_TYPE_NONE); 
      FOGCOLOR = (vfog.vColor); 
      VertexShader = compile vs_2_0 vs_main(); 
   } 
} 
 
When the app is in diff mode, two render-to-texture passes are used (one for each of the 
above techniques). Then, on a third pass, a quad is rendered filling the entire back buffer 
using a pixel shader that computes the difference between the two textures. The texture 
and sampler settings are omitted here. Please refer to the code for further detail. The diff 
pixel shader and technique are shown below. 
 
//---------------------------------------------------------------------
// Name: ps_diff() 
// Desc: Pixel shader for the diff mode 
//       Tiny errors: green. Larger errors: yellow to red. 
//---------------------------------------------------------------------
float4 ps_diff (float2 tcBase : TEXCOORD0) : COLOR 
{ 
   float E = length(tex2D(DiffSampler1, tcBase)  
                    - tex2D(DiffSampler2, tcBase))/sqrt(3); 
   float4 C = float4(0.f,0.f,0.f,E); 
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   if(E > 0.f) 
   { 
      if(E <= 1.f/255.f) 
      { 
         if(bDiffSensitivity) 
         { 
            C = float4(0.f,1.f,0.f,E); 
         } 
      } 
      else 
      { 
         C = lerp(float4(1.f,1.f,0.f,E), float4(1.f,0.f,0.f,E),E); 
      } 
   } 
   return C; 
} 
 
//technique for the diff mode 
technique technique_diff 
{ 
   pass P0 
   { 
      PixelShader = compile ps_2_0 ps_diff(); 
   } 
} 
 
Additional HLSL Issues 
 
Aside from the issues described above, several other design and technical issues arose in 
the process of building this shader. We will describe some of these issues next. 
 
Vertex Shader 2.0 
 
The main purpose of this shader is to mimic the standard DirectX 9 fixed function vertex 
pipeline using static flow control. vs_2_0 is the first version that supports if-else-endif 
and loop instructions. More details on these instructions can be found below on their 
respective sections.  
 
In developing this shader, we attempted to mimic a large subset of the fixed function 
vertex pipeline within a single shader. vs_2_0 supports 256 instructions, twice that of 
vs_1_1, and is sufficient to implement all types of lights, fog, texture coordinate 
generation, and tweening. Aside from that, it also has significantly more constant store 
space, which is necessary for applications that require a lot of lights. 
 
Having said that, parts of this shader can, however, be stripped out and compiled for 
vs_1_1 (without static flow control) in order to support legacy hardware. 
 
Boolean registers 
 
vs_2_0 supports 16 constant boolean registers. In order to place a bool variable in the 
boolean register, the variable must be declared as follows: 
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bool bSpecular : register(b0) = false; 
 
where b0 can be replaced by b1, b2,…, b15. 
 
Unfortunately, indexing into boolean registers (by using an int or float index) is not 
supported by the programming model. Thus, one cannot use an array of bools to specify 
whether a light is on or off and index into it inside a loop. In order to address this 
problem, our shader uses separate loops for the different types of lights. We will discuss 
this in further detail in the “Loops” section below. 
 
Flow control 
 
In vs_2_0, if-else-endif static flow control instructions are evaluated and the code path is 
determined prior to execution. Thus, static branching instructions are essentially free. 
Referring back to the HLSL code on pages 6 and 7, the DoDirLight() routine 
conditionally computes specular illumination based on a static branch.  Such HLSL code 
results in the following asm code. 
 
if b0 
  mad r3.xyz, r7, -r7.w, r0 
  nrm r0.xyz, r3  // DoDirLight::H<0,1,2> 
  dp3 r0.x, r0, r8 
  max r4.w, r0.x, c76.x 
  pow r3.w, r4.w, c64.x 
  mul r4, r3.w, c5[a0.w]  // DoDirLight::Out<4,5,6,7> 
else 
  mov r4, c76.x  // DoDirLight::Out<4,5,6,7> 
endif 
 
As you can see, this code computes the specular color only if register b0 is true. If b0 is 
false, only one instruction is executed. 
 
Such static flow control instructions can only be performed on constant boolean registers. 
This can be a significant drawback since it prevents any flow control from being done 
inside the loop if the loop invariant is used to index the boolean array. If you have a large 
boolean array that is indexed inside a loop that is too large to unroll while staying within 
the 256 instruction limit, the only solution is to use float storage and give up doing flow 
control on that variable. In that case, since there is no dynamic flow control in vs_2_0, 
the shader would take all code paths and linearly interpolate the results. While this 
significantly degrades performance, it might be necessary to stay within the instruction 
count limit.  
 
Since there is no dynamic flow control, code optimization strategies are significantly 
different from those performed on code that runs on the CPU. For instance, the following 
linear fog computation code: 
 
if(d <= fFogStart) 
   fog = 1.f; 
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else if(d >= fFogEnd) 
   fog = 0.f; 
else 
   fog = (fFogEnd - d)/(fFogEnd - fFogStart); 
 
can be replaced by 
 
fog = saturate((fFogEnd - d)/(fFogEnd - fFogStart)); 
 
since the more expensive computation with two subtractions and one division would have 
to be performed anyway, regardless of the value of d. The above optimization prevents 
lerping of the if-elseif-else expressions, thus resulting in three fewer instructions. 
 
Below is another code example.  
 
if(floatVar == 1) 
   x = a; 
else 
   x = 0; 
 
If floatVar can only hold a value of 0 or 1, the best way to do flow control based on 
floatVar, is to do the lerping on the HLSL code. The above code can be replaced by 
 
x = floatVar * a; 
 
Also note that checking for a non-zero value (storing 1 in r0.w if the value in c0.x is 
positive) compiles to 
 
mul r0.w, c0.x, c0.x 
slt r0.w, -r0.w, r0.w 
 
while checking for 1 compiles to 
 
mov r0.w, c0.x 
add r0.w, r0.w, c1.x   //c1.x == -1 
mul r0.w, r0.w, r0.w 
sge r0.w, -r0.w, r0.w 
 
So, if(floatVar) would also be more efficient  than if(floatVar == 1). 
 
Loops 
 
Since we cannot perform static flow control to determine the light types of each of our N 
lights inside a loop, our solution is to use different loops for each light type. This solution 
ensures that, for each light, only the computation relevant to that particular light type is 
performed. 
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The D3DX HLSL compiler has some restrictions on the types of for loops which will 
result in asm flow-control instructions. Specifically, they must be of the form for(i = 
0; i < n; i++) in order to generate the desired asm instruction sequence: 
 
rep i0 
  //loop instructions 
endrep 
 
where i0 is an integer register specifying the number of times to go through the loop. The 
loop counter is initialized before the rep instruction and incremented before the endrep 
instruction. 
 
Since loops must be specified in that form, we have an iLightDirNum instead of a 
lightDirEnd to specify the bounds of the light array: 
 
for(int i = 0; i < iLightDirNum; i++) 
{ 
   COLOR_PAIR ColOut = DoDirLight(N, V, i+iLightDirIni); 
   Out.Color += ColOut.Color; 
   Out.ColorSpec += ColOut.ColorSpec; 
} 
 
Interfacing with the Effects file 
 
Effects interface creation 
 
The ID3DXEffect interface is used to query and modify the state variables in the effects 
file. An instance of this interface is created via a call to D3DXCreateEffectFromFile(), 
passing the FixedFuncShader.fx file as a parameter: 
 
D3DXCreateEffectFromFile(m_pd3dDevice, "Effects\\FixedFuncShader.fx",  
                         NULL, NULL, D3DXSHADER_DEBUG, NULL, 
                         &m_pEffect,&pBufferErrors); 
 
Querying and modifying effects file variables 
 
At startup, the application queries the default values from the effects file. At runtime, the 
effects file global variables are set whenever they are modified using the UI. To modify 
the values of a global variable in the effects file, the SetValue() member function is 
used. For instance, the following code sets the value of the ambient color on the shader. 
 
pEffect->SetValue("vAmbientColor", (void*)&m_vAmbientColor,  
                  sizeof(D3DCOLORVALUE)); 
 
Similarly, the following code queries that value. 
 
pEffect->GetValue("vAmbientColor", (void*)&m_vAmbientColor,  
                  sizeof(D3DCOLORVALUE)); 
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There are also specific functions for different data types, such as GetFloat() and 
GetInt(). However, GetValue() and SetValue() work for all cases I came across, 
except for boolean variables and matrices, which must be accessed using their specific 
functions: 
 
pEffect->SetBool("bTweening", &m_bTweening); 
pEffect->GetBool("bTweening", &m_bTweening);  
 
pEffect->SetMatrix("bTweening", &m_bTweening); 
pEffect->GetMatrix("bTweening", &m_bTweening);  
 
However, since matrices are stored in transposed form, it is easier to use: 
 
pEffect->SetMatrixTranspose("matView", &m_matView); 
pEffect->GetMatrixTranspose("matView", &m_matView);  
 
Then, your HLSL code can do standard right-multiplication of vectors (e.g., x = Ab). 
 
The CSceneState class 
 
The main application class owns an instance of the CSceneState class, which interfaces 
with the effects file. This class receives a pointer to the ID3DXEffect interface and 
queries/sets the global variables in the effects file that are used by the HLSL shader. This 
is achieved by calling the member functions InitFromEffects() and 
WriteToEffects(), which in turn calls the GetValue() and SetValue() functions 
described above for all the variables. Each global variable in the effects file has a 
counterpart in this class: 
 
//three lights 
int m_iLightType[3]; 
D3DLIGHT9 m_light[3]; 
 
//fog settings 
CVertexFog m_vfog; 
 
//texture coordinate settings for 3 stages 
CTexture m_tex[3]; 
 
//misc settings 
bool m_bSpecular; 
bool m_bVertexColor; 
bool m_bTweening; 
D3DCOLORVALUE m_vAmbientColor; 
D3DCOLORVALUE m_vMaterialColor; 
float m_fMaterialPower; 
 
The CVertexFog and CTexture structures are defined as: 
 
struct CVertexFog 
{ 
   int iType; 
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   D3DCOLORVALUE vColor; 
   float fStart; 
   float fEnd; 
   float fDensity; 
   bool bRange; 
}; 
 
struct CTexture 
{ 
   int iTexType; 
   int iTexGenType; 
   int iTexTransType; 
   bool bTexTransProjected; 
   D3DXMATRIXA16 matTexTransform; 
}; 
 
Rendering 
 
During rendering, the technique specified in the effects file is set using a call to 
SetTechnique(). Both code paths (our HLSL shader and the fixed function pipeline) use 
a single pass for rendering the scene, thus the rendering code is as follows: 
 
m_pEffect->SetTechnique(m_pEffect->GetTechniqueByName("basic")); 
 
UINT cPasses; 
m_pEffect->Begin(&cPasses, 0); 
m_pEffect->Pass(0); 
 
//render code goes here 
 
m_pEffect->End(); 
 
If the technique specifies multiple passes, they can be rendered by calling the Pass() 
member function prior to the draw calls. 
 
Render and Texture States 
 
Below is a list of render and texture states supported by our shader. 
 
Lighting: 
D3DRS_LIGHTING 
D3DRS_AMBIENT 
 
Fog: 
D3DRS_FOGVERTEXMODE 
D3DRS_FOGCOLOR 
D3DRS_FOGSTART 
D3DRS_FOGEND 
D3DRS_FOGDENSITY 
D3DRS_RANGEFOGENABLE 
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Tweening: 
D3DRS_VERTEXBLEND 
D3DRS_TWEENFACTOR 
 
Texture coordinate generation: 
D3DTSS_TEXCOORDINDEX 
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