
1

Hello! My name is Natalya Tatarchuk, and today I’ll share with you our approaches for
using GPU tessellation to render crowds of animated, detailed characters. This
presentation builds upon our methods for GPU scene management for crowd
rendering.

2

One of the goals of our work has been to increase visual fidelity for rendering the
characters. The result needs to match the artistic vision for the character – and,
ideally, surpass it!

We sought a technique that allows detailed internal and external silhouettes, but that
works coherently and seamlessly with MSAA. The use of GPU tessellation in
conjunction with displacement mapping allows us to get closer to this goal.

3

4

Here is an example of a character designed to meet the needs of current games – it’s
a low resolution mesh (around 5K triangles) for our Frog Goblin character, the Froblin.
Notice the coarse silhouettes and lack of detail in the highlighted regions.

5

Using tessellation on characters (and other parts of the environment) allows superior
detail and high quality animation. You can instantly see the difference in the amount
of fine scale detail such as the bumps on his skin in this shot.

6

Here is a close up so that you can see the real difference between a conventional
rendering without tessellation

7

And with using GPU tessellation and displacement mapping. We definitely start
getting a much better feel for the warts and wrinkles on this character’s skin.

We wanted to be able to increase visual fidelity in variety of complex scenarios, not
only in cases of rendering a single character. In our dynamic interactive environment,
from the Froblins demo, we have a large world, full of thousands of characters,
simulated directly on GPU.

8

As such, we had to be able to support a range of viewpoints with the same visual
fidelity. Here you see a far away (bird’s eye) shot with thousands of characters.

9

However, when we would get close to any of these characters, we wanted to see a
great deal of details on them – without losing significant performance or having to
swap in new meshes.

Our solution takes advantage of GPU tessellation available on a number of recent
commodity GPUs.

10

We designed an API for a GPU tessellation pipeline taking advantage of hardware
fixed-function tessellator unit available on recent consumer GPUs. We start by
rendering a low resolution mesh (also referred to as control cage).

The tessellator unit generates parametric coordinates on the tessellated surface (the
uvs) and topology connectivity for subdivided input primitives amplifying the original
data up to 411 times.

The generated vertex data is directly consumed by the vertex shader invoked for
each new vertex.

The super-primitive vertex IDs and barycentric coordinates are used to evaluate the
new surface position.

The amount of amplification can be controlled either by a per draw call tessellation
level or by dynamically computing tessellation factors per-primitive edge for the input
mesh.

11

With Direct3D 10 API and beyond, we can combine tessellation with several
additional features, such as geometry shaders, stream out, and instancing. We can
also use these features for an animation and transformation pass for the low-
resolution control cage.

12

There several important advantages to using GPU tessellation. We can design one set
of assets to use with and without GPU tessellation (with an addition of a
displacement map). The latter can be used on systems without GPU tessellation
to do complex per-pixel lighting effects.

Fine geometric detail are captured by the displacement map. Animation data is only
stored for the control cage (the low resolution mesh).

13

Thus we can think of hardware tessellation as an effective form of geometry
compression. We can see this in the table where we compare the footprint for a
GPU tessellation-ready model (a little over 10 MB) with a comparable high
resolution model for the full character mesh (450 MB). We see that for a modest
increase in memory footprint, we dramatically increase the total polygonal count
for the rendered mesh when using GPU tessellation.

14

We use interpolative planar subdivision with displacement to efficiently render our
highly detailed characters. The benefits of this approach (as opposed to higher order
surface evaluation) is extremely fast computation of new surface positions.
Additionally, the interpolation happens on triangular domain, which allows us to use
the same low-resolution mesh assets as traditional rendering for the control cage.

15

We can use tessellation to control how fine we are going to subdivide this character’s
mesh.

We specify tessellation level, controlling the amount of amplification, per draw-call.

We can use the information about character location on the screen or other factors
to control the desired amount of details.

Per-draw call tessellation level specification works well for rendering individual
characters, such as this contemplative Froblin here.

16

However, this approach doesn’t necessarily scale well for dynamically simulated
scenarios, as in this picture (and our environment).

If we use this strategy, the amount of draw-calls can increase drastically in crowded
scenarios, as the number of tessellated characters we wish to render increases.

17

In many scenarios, we may not know the exact number of tessellated characters in a
given view. This is particularly important in cases where the simulation happens on
the GPU, and changes interactively, with no a priori control.

18

We need to be able to render high quality detailed characters, even if we suddenly
enter extremely crowded areas, without bringing the application down to a crawl.

19

To address this challenge, we utilize DirectX 10.1 features for level of detail
management to render our froblins as an army of instanced characters.

20

We can use this method along with stream out buffers and geometry shaders for GPU
scene management and texture arrays to create visually interesting and varied crowd
of characters. Here in the example, we note that the creatures tinted with red are
rendered with GPU tessellation, the green froblins are rendered with conventional
rendering and the blue froblins use simplified geometry.

21

The tessellation level is calculated as follows:

Here, Ti is the tessellation level to be used for character instances in the first detail
level, N is the number of character instances in the first detail level, and Tmax is the
maximum tessellation level to use for a single character. This scheme effectively
bounds the number of triangles created by the tessellator, and ensures that the
primitive count will never increase by more than the cost of M fully tessellated
characters. If there are more than M such characters in the view frustum, this
scheme will divide the tessellated triangles evenly among them. While this can lead
to slight visual popping as the size of the crowd changes dramatically from one frame
to the next, in a lively scene with numerous animated characters this popping is very
hard to perceive.

22

When we render animated characters with subdivision, we need to perform
animation calculations on the control mesh (the superprimitives), and then
interpolate between the animated superprimitive vertices. A brute force approach of
transforming and animating the superprimitive vertices in the evaluation shader
wastes performance and bandwidth due to redundant computations – all newly
generated tessellated vertices would perform the same computations as on the
original vertices. Because hardware tessellation can generate millions of additional
triangles, it is essential to minimize the amount of per-vertex computations post-
tessellation, and to perform animation calculations only once per control vertex.

23

We improve performance with a multi-pass approach for rendering out animated
characters. We compute control cage pre-pass, where we can compute all relevant
computations for the original low resolution mesh, such as animation and vertex
transformations. This method is general and takes advantage of Direct3D® 10 stream
out functionality.

In the first pass we perform input mesh animation and transformations; rendering
the base mesh vertices as instanced sets of point primitives, skinning them, and
streaming out the results. Since we are performing this computation on the coarse
input mesh, we can afford higher quality skinning as well as significantly reduce
geometry transform cost.

1/9/2009 3:44 PM

24

In the next pass, we tessellate the already animated and transformed mesh, using the
original input primitive vertices’ vertex ID and instance ID to retrieve and interpolate
the transformed vertices from the stream out buffer, and apply displacement
mapping.

1/9/2009 3:44 PM

25

Note that using this multi-pass method for control cage rendering is beneficial not
only for rendering tessellated characters, but for any rendering pipeline where we
wish to reuse results of expensive vertex operations multiple times. For example, we
can use the results of the first pass for our animated and transformed characters for
rendering into shadow maps and cube maps for reflections.

1/9/2009 3:44 PM

26

Although it is helpful to stream and re-use the animation calculations, this alone is
not fully effective.

The vertex data will be streamed at full precision, and the evaluation shader must still
pay a large cost in memory bandwidth and fetch instructions to retrieve it.

We augmented our control cage multi-pass method with vertex compression and
decompression.

1/9/2009 3:44 PM

27

This modification helps reduce the amount of memory being streamed out per
character, as well as reduce vertex fetch and vertex cache reuse for the evaluation
shader.

28

We use a compression scheme to pack the transformed vertices into a compact 128-
bit format, allowing the tessellation pass to load a full set of vertex data using only
one vertex fetch.

29

We compress vertex positions by expressing them as fixed-point values which are
used to interpolate the corners of a sufficiently large bounding box that is local to
each character.

30

We can compress the tangent frame by converting the basis vectors to spherical
coordinates and quantizing them. Spherical coordinates are well suited to
compressing unit length vectors, since every compressed value in the spherical
domain corresponds to a unique unit-length vector.

31

Texture coordinates are compressed by converting the uv coordinates into a pair of
fixed-point values, using whatever bits are left. To ensure acceptable precision, this
requires that the uv coordinates in the model to the 0-1 range, with no explicit tiling
of textures by the artist.

32

Here we have performance analysis for different methods of rendering our character,
starting from conventional (no GPU tessellation rendering).

33

We notice that brute force conversion to GPU tessellation reduces performance (as
compared to rendering the input low resolution mesh) to about 50% while
dramatically increasing the overall quality of character rendering (as seen in this
image).

34

A straight-forward conversion of GPU tessellation to multi-pass rendering doesn’t
offer any performance improvement, as we notice here.

35

However, although the compression scheme requires additional ALU cycles for both
compression and decompression, this is more than compensated for by the reduction
in memory bandwidth and fetch operations in the evaluation shader.

The multi-pass GPU tessellation approach with shader-based vertex compression
provides 54% performance increase over the single pass GPU tessellation
performance.

36

Furthermore, we notice that this method is 70% as fast as low-resolution mesh
rendering, while rendering over 411 times MORE polygons for our high-quality
character!

37

In this table, we compare performance of using dynamic method for computing
tessellation amount based on crowd density versus a statically specified tessellation
level. We notice that our method provides 41% increase in overall frame
performance, which is impressive considering a huge number of other elements
present in this frame (performing GPU simulation, rendering cascade shadows, post-
processing, just to name a few).

38

Next, we also wanted to mention a couple of production challenges that we’ve
encountered while working on our algorithms. One particular aspect of rendering
characters with displacement mapping is dealing with maps that contain texture uv
borders as they frequently introduce texture uv seams.

40

UV borders are rarely one-to-one in parameterization. Unless neighboring borders are
laid out with the same orientations and lengths, displacing with these maps will
introduce geometry cracks along the seams.

Here we highlighted the specific edges along the texture seam (in green). Note that
the adjacent edges for this seam do not have uniform parameterization.

41

Example of a visible crack generated due to inconsistent values across the edges of
displacement map for this character. This crack is generated along the seam that we
highlighted in green on the previous slide.

Note that the images’ contrast and brightness have been manipulated for higher
contrast.

1/9/2009 3:44 PM

42

Typically, with brute force displacement map generation, different floating point
values are created across edges. Even if we had textured our character with tiled
textures (however impractical of a concept), while this seamless parameterization
alleviates bilinear artifacts, we still have to worry about floating point precision
mismatch along the seams.

43

To solve this problem, we post-process our displacement maps by correcting all the
texture uv borders as follows.

44

First, we identify the border triangle edges (i.e. edges that contain vertices with more
than one set of texture coordinates).

45

Then, for each border edge, we compute the texel locations for the vertices; fetch,
average, and update the texels for matching vertices.

46

As long as all these border vertices map to unique texel locations, we can ensure a
crack-free displacement mapping using nearest neighbor texture filtering.

47

To improve uv seams for linear texture filtering and/or hardware tessellation, for each
border edge, we sample the edge with equidistant points. Then, for each sampled
point, we fetch, average and update the texels for matching points. Because the
points might not map one-to-one, we repeat the above process several times to
enhance the result. At the end, we dilate the uv borders.

48

This technique is attractive because it is fast, simple to implement and it generates
good results.

49

Furthermore, this method does not require additional computations at run-time,
which is very important when evaluating surface positions for subdivision surface,
which frequently may contain millions of triangles at render time!. This functionality
is integrated into the freely available GPUMeshMapper tool.

50

To conclude, our methods provide a set of techniques allowing dramatic
improvement in visual quality for our rendered characters, letting technology match
the creative vision of the artists. Using GPU tessellation with displacement mapping
and the multi-pass technique with vertex compression in the shaders allows excellent
performance with tremendous jump in visual fidelity. Additionally, we also developed
a method to increase the quality of generated displacement maps to use with our
algorithms.

51

I’d like to thank some folks who contributed to the techniques we just described and
who also worked on the Froblins demo.

52

If you are interested in further information, here are some helpful links.

53

54

55

56

