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Hello! My name is Natalya Tatarchuk, and today I’ll share with you our approaches for 
using GPU tessellation to render crowds of animated, detailed characters. This 
presentation builds upon our methods for GPU scene management for crowd 
rendering. 
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One of the goals of our work has been to increase visual fidelity for rendering the 
characters. The result needs to match the artistic vision for the character – and, 
ideally, surpass it! 

We sought a technique that allows detailed internal and external silhouettes, but that 
works coherently and seamlessly with MSAA. The use of GPU tessellation in 
conjunction with displacement mapping allows us to get closer to this goal. 
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Here is an example of a character designed to meet the needs of current games – it’s 
a low resolution mesh (around 5K triangles) for our Frog Goblin character, the Froblin. 
Notice the coarse silhouettes and lack of detail in the highlighted regions.
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Using tessellation on characters (and other parts of the environment) allows superior 
detail and high quality animation. You can instantly see the difference in the amount 
of fine scale detail such as the bumps on his skin in this shot.
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Here is a close up so that you can see the real difference between a conventional
rendering without tessellation



7

And with using GPU tessellation and displacement mapping. We definitely start 
getting a much better feel for the warts and wrinkles on this character’s skin. 



We wanted to be able to increase visual fidelity in variety of complex scenarios,  not 
only in cases of rendering a single character. In our dynamic interactive environment, 
from the Froblins demo, we have a large world, full of thousands of characters, 
simulated directly on GPU. 

8



As such, we had to be able to support a range of viewpoints with the same visual 
fidelity. Here you see a far away (bird’s eye) shot with thousands of characters. 
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However, when we would get close to any of these characters, we wanted to see a 
great deal of details on them – without losing significant performance or having to 
swap in new meshes. 

Our solution takes advantage of GPU tessellation available on a number of recent 
commodity GPUs. 
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We designed an API for a GPU tessellation pipeline taking advantage of hardware 
fixed-function tessellator unit available on recent consumer GPUs. We start by 
rendering a low resolution mesh (also referred to as control cage). 

The tessellator unit generates parametric coordinates on the tessellated surface (the 
uvs) and topology connectivity for subdivided input primitives amplifying the original 
data up to 411 times. 

The generated vertex data is directly consumed by the vertex shader invoked for 
each new vertex.

The super-primitive vertex IDs and barycentric coordinates are used to evaluate the 
new surface position.

The amount of amplification can be controlled either by a per draw call tessellation 
level or by dynamically computing tessellation factors per-primitive edge for the input 
mesh. 
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With Direct3D 10 API and beyond, we can combine tessellation with several 
additional features, such as geometry shaders, stream out, and instancing. We can 
also use these features for an animation and transformation pass for the low-
resolution control cage. 
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There several important advantages to using GPU tessellation. We can design one set 
of assets to use with and without GPU tessellation (with an addition of a 
displacement map). The latter can be used on systems without GPU tessellation 
to do complex per-pixel lighting effects. 

Fine geometric detail are captured by the displacement map. Animation data is only 
stored for the control cage (the low resolution mesh). 
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Thus we can think of hardware tessellation as an effective form of geometry 
compression. We can see this in the table where we compare the footprint for a 
GPU tessellation-ready model (a little over 10 MB) with a comparable high 
resolution model for the full character mesh (450 MB). We see that for a modest 
increase in memory footprint, we dramatically increase the total polygonal count 
for the rendered mesh when using GPU tessellation.
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We use interpolative planar subdivision with displacement to efficiently render our 
highly detailed characters. The benefits of this approach (as opposed to higher order 
surface evaluation) is extremely fast computation of new surface positions. 
Additionally, the interpolation happens on triangular domain, which allows us to use 
the same low-resolution mesh assets as traditional rendering for the control cage. 
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We can use tessellation to control how fine we are going to subdivide this character’s 
mesh. 

We specify tessellation level, controlling the amount of amplification, per draw-call. 

We can use the information about character location on the screen or other factors 
to control the desired amount of details. 

Per-draw call tessellation level specification works well for rendering individual 
characters, such as this contemplative Froblin here. 
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However, this approach doesn’t necessarily scale well for dynamically simulated 
scenarios, as in this picture (and our environment).

If we use this strategy, the amount of draw-calls can increase drastically in crowded 
scenarios, as the number of tessellated characters we wish to render increases. 
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In many scenarios, we may not know the exact number of tessellated characters in a 
given view. This is particularly important in cases where the simulation happens on 
the GPU, and changes interactively, with no a priori control. 
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We need to be able to render high quality detailed characters, even if we suddenly 
enter extremely crowded areas, without bringing the application down to a crawl. 

19



To address this challenge, we utilize DirectX 10.1 features for level of detail 
management to render our froblins as an army of instanced characters. 
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We can use this method along with stream out buffers and geometry shaders for GPU
scene management and texture arrays to create visually interesting and varied crowd 
of characters. Here in the example, we note that the creatures tinted with red are 
rendered with GPU tessellation, the green froblins are rendered with conventional 
rendering and the blue froblins use simplified geometry. 
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The tessellation level is calculated as follows:

Here, Ti is the tessellation level to be used for character instances in the first detail 
level, N is the number of character instances in the first detail level, and Tmax is the 
maximum tessellation level to use for a single character.  This scheme effectively 
bounds the number of triangles created by the tessellator, and ensures that the 
primitive count will never increase by more than the cost of M fully tessellated 
characters.  If there are more than M such characters in the view frustum, this 
scheme will divide the tessellated triangles evenly among them.  While this can lead 
to slight visual popping as the size of the crowd changes dramatically from one frame 
to the next, in a lively scene with numerous animated characters this popping is very 
hard to perceive.
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When we render animated characters with subdivision, we need to perform 
animation calculations on the control mesh (the superprimitives), and then 
interpolate between the animated superprimitive vertices. A brute force approach of 
transforming and animating the superprimitive vertices in the evaluation shader 
wastes performance and bandwidth due to redundant computations – all newly 
generated tessellated vertices would perform the same computations as on the 
original vertices. Because hardware tessellation can generate millions of additional 
triangles, it is essential to minimize the amount of per-vertex computations post-
tessellation, and to perform animation calculations only once per control vertex. 
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We improve performance with a multi-pass approach for rendering out animated 
characters. We compute control cage pre-pass, where we can compute all relevant 
computations for the original low resolution mesh, such as animation and vertex 
transformations. This method is general and takes advantage of Direct3D® 10 stream 
out functionality. 

In the first pass we perform input mesh animation and transformations; rendering 
the base mesh vertices as instanced sets of point primitives, skinning them, and 
streaming out the results. Since we are performing this computation on the coarse 
input mesh, we can afford higher quality skinning as well as significantly reduce 
geometry transform cost. 

1/9/2009 3:44 PM

24



In the next pass, we tessellate the already animated and transformed mesh, using the 
original input primitive vertices’ vertex ID and instance ID to retrieve and interpolate 
the transformed vertices from the stream out buffer, and apply displacement 
mapping. 
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Note that using this multi-pass method for control cage rendering is beneficial not 
only for rendering tessellated characters, but for any rendering pipeline where we 
wish to reuse results of expensive vertex operations multiple times. For example, we 
can use the results of the first pass for our animated and transformed characters for 
rendering into shadow maps and cube maps for reflections. 
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Although it is helpful to stream and re-use the animation calculations, this alone is 
not fully effective. 

The vertex data will be streamed at full precision, and the evaluation shader must still 
pay a large cost in memory bandwidth and fetch instructions to retrieve it. 

We augmented our control cage multi-pass method with vertex compression and 
decompression. 
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This modification helps reduce the amount of memory being streamed out per 
character, as well as reduce vertex fetch and vertex cache reuse for the evaluation 
shader.
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We use a compression scheme to pack the transformed vertices into a compact 128-
bit format, allowing the tessellation pass to load a full set of vertex data using only 
one vertex fetch. 
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We compress vertex positions by expressing them as fixed-point values which are 
used to interpolate the corners of a sufficiently large bounding box that is local to 
each character. 
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We can compress the tangent frame by converting the basis vectors to spherical 
coordinates and quantizing them.  Spherical coordinates are well suited to 
compressing unit length vectors, since every compressed value in the spherical 
domain corresponds to a unique unit-length vector. 
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Texture coordinates are compressed by converting the uv coordinates into a pair of 
fixed-point values, using whatever bits are left.  To ensure acceptable precision, this 
requires that the uv coordinates in the model to the 0-1 range, with no explicit tiling 
of textures by the artist. 
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Here we have performance analysis for different methods of rendering our character, 
starting from conventional (no GPU tessellation rendering).
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We notice that brute force conversion to GPU tessellation reduces performance (as 
compared to rendering the input low resolution mesh) to about 50% while 
dramatically increasing the overall quality of character rendering (as seen in this 
image). 
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A straight-forward conversion of GPU tessellation to multi-pass rendering doesn’t 
offer any performance improvement, as we notice here. 
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However, although the compression scheme requires additional ALU cycles for both 
compression and decompression, this is more than compensated for by the reduction 
in memory bandwidth and fetch operations in the evaluation shader.

The multi-pass GPU tessellation approach with shader-based vertex compression 
provides 54% performance increase over the single pass GPU tessellation 
performance.

36



Furthermore, we notice that this method is 70% as fast as low-resolution mesh 
rendering, while rendering over 411 times MORE polygons for our high-quality 
character! 
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In this table, we compare performance of using dynamic method for computing 
tessellation amount based on crowd density versus a statically specified tessellation 
level. We notice that our method provides 41% increase in overall frame 
performance, which is impressive considering a huge number of other elements 
present in this frame (performing GPU simulation, rendering cascade shadows, post-
processing, just to name a few). 
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Next, we also wanted to mention a couple of production challenges that we’ve 
encountered while working on our algorithms. One particular aspect of rendering 
characters with displacement mapping is dealing with maps that contain texture uv
borders as they frequently introduce texture uv seams. 
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UV borders are rarely one-to-one in parameterization. Unless neighboring borders are 
laid out with the same orientations and lengths, displacing with these maps will 
introduce geometry cracks along the seams.

Here we highlighted the specific edges along the texture seam (in green). Note that 
the adjacent edges for this seam do not have uniform parameterization. 
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Example of a visible crack generated due to inconsistent values across the edges of 
displacement map for this character. This crack is generated along the seam that we 
highlighted in green on the previous slide.

Note that the images’ contrast and brightness have been manipulated for higher 
contrast. 
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Typically, with brute force displacement map generation, different floating point 
values are created across edges. Even if we had textured our character with tiled 
textures (however impractical of a concept), while this seamless parameterization 
alleviates bilinear artifacts, we still have to worry about floating point precision 
mismatch along the seams. 
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To solve this problem, we post-process our displacement maps by correcting all the 
texture uv borders as follows.
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First, we identify the border triangle edges (i.e. edges that contain vertices with more 
than one set of texture coordinates). 
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Then, for each border edge, we compute the texel locations for the vertices; fetch, 
average, and update the texels for matching vertices. 
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As long as all these border vertices map to unique texel locations, we can ensure a 
crack-free displacement mapping using nearest neighbor texture filtering. 
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To improve uv seams for linear texture filtering and/or hardware tessellation, for each 
border edge, we sample the edge with equidistant points. Then, for each sampled 
point, we fetch, average and update the texels  for matching points. Because the 
points might not map one-to-one, we repeat the above process several times to 
enhance the result. At the end, we dilate the uv borders. 

48



This technique is attractive because it is fast, simple to implement and it generates 
good results. 
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Furthermore, this method does not require additional computations at run-time, 
which is very important when evaluating surface positions for subdivision surface, 
which frequently may contain millions of triangles at render time!. This functionality 
is integrated into the freely available GPUMeshMapper tool. 
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To conclude, our methods provide a set of techniques allowing dramatic 
improvement in visual quality for our rendered characters, letting technology match 
the creative vision of the artists. Using GPU tessellation with displacement mapping 
and the multi-pass technique with vertex compression in the shaders allows excellent 
performance with tremendous jump in visual fidelity. Additionally, we also developed 
a method to increase the quality of generated displacement maps to use with our 
algorithms. 
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I’d like to thank some folks who contributed to the techniques we just described and 
who also worked on the Froblins demo.
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If you are interested in further information, here are some helpful links. 
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