SIGGRAPH 2008

GPU Tessellation for Detailed,
Animated Crowds

NEW HORIZONS

CJ SIGGRAPHASIA2008

Hello! My name is Natalya Tatarchuk, and today I’ll share with you our approaches for
using GPU tessellation to render crowds of animated, detailed characters. This
presentation builds upon our methods for GPU scene management for crowd
rendering.

Goal: Visual Fidelity

+ Tessellation in conjunction with displacement mapping
delivers cinematic quality visuals

* Goal:
— Alleviate low-resolution polygonal artifacts
— Work with MSAA

* Highly detailed silhouettes
— External Silhouettes

— Internal Silhouettes

nnnnnnnnnnn

One of the goals of our work has been to increase visual fidelity for rendering the
characters. The result needs to match the artistic vision for the character — and,
ideally, surpass it!

We sought a technique that allows detailed internal and external silhouettes, but that
works coherently and seamlessly with MSAA. The use of GPU tessellation in
conjunction with displacement mapping allows us to get closer to this goal.

Here is an example of a character designed to meet the needs of current games — it’s
a low resolution mesh (around 5K triangles) for our Frog Goblin character, the Froblin.
Notice the coarse silhouettes and lack of detail in the highlighted regions.

Using tessellation on characters (and other parts of the environment) allows superior
detail and high quality animation. You can instantly see the difference in the amount
of fine scale detail such as the bumps on his skin in this shot.

BRAPHICS|

Here is a close up so that you can see the real difference between a conventional
rendering without tessellation

And with using GPU tessellation and displacement mapping. We definitely start
getting a much better feel for the warts and wrinkles on this character’s skin.

Motivation: Diverse and Complex Scenarios

We wanted to be able to increase visual fidelity in variety of complex scenarios, not
only in cases of rendering a single character. In our dynamic interactive environment,
from the Froblins demo, we have a large world, full of thousands of characters,
simulated directly on GPU.

Range of Viewpoints with Same Art Assets

R o
B " LN
% m‘j & b \y ‘\ J

Tyt

As such, we had to be able to support a range of viewpoints with the same visual
fidelity. Here you see a far away (bird’s eye) shot with thousands of characters.

Range of Viewpoints with Same Art Assets

Displacenent mapping is added to capture all
the fine scale details of the character,

However, when we would get close to any of these characters, we wanted to see a
great deal of details on them — without losing significant performance or having to
swap in new meshes.

Our solution takes advantage of GPU tessellation available on a number of recent
commodity GPUs.

10

GPU Tessellation Process

Tessellator ot
Unit : 2 Evaluate
surface
Generates iti
parametric L positions
locations on A
the surface T
Add
displacement
Super-prim Tessellated Tessellated and
Mesh Mesh | Displaced Mesh
(low resolution (high resolution
model)

model)

Displaceme
Map) SIGGRAPHASIA2008

NEW HORIZONS

We designed an API for a GPU tessellation pipeline taking advantage of hardware
fixed-function tessellator unit available on recent consumer GPUs. We start by
rendering a low resolution mesh (also referred to as control cage).

The tessellator unit generates parametric coordinates on the tessellated surface (the
uvs) and topology connectivity for subdivided input primitives amplifying the original
data up to 411 times.

The generated vertex data is directly consumed by the vertex shader invoked for
each new vertex.

The super-primitive vertex IDs and barycentric coordinates are used to evaluate the
new surface position.

The amount of amplification can be controlled either by a per draw call tessellation
level or by dynamically computing tessellation factors per-primitive edge for the input
mesh.

11

GPU Tessellation Pipeline: Direct3D 10

[psemvir|
[Tessellator |

Input Assembler
Tessellator
Vertex Shader

Geometry Shader

Stream Output
Rasterizer

Pixel Shader

Memory / Resources

Output Merger

t) SIGGRAPHASIA2008

NEW HORIZONS

With Direct3D 10 APl and beyond, we can combine tessellation with several
additional features, such as geometry shaders, stream out, and instancing. We can
also use these features for an animation and transformation pass for the low-
resolution control cage.

12

Storage / Compression

* Dramatic reduction in storage cost
* The same art assets as conventional rendering

« Only additional storage requirement over existing
techniques is a displacement map

nnnnnnnnnnn

There several important advantages to using GPU tessellation. We can design one set
of assets to use with and without GPU tessellation (with an addition of a
displacement map). The latter can be used on systems without GPU tessellation
to do complex per-pixel lighting effects.

Fine geometric detail are captured by the displacement map. Animation data is only
stored for the control cage (the low resolution mesh).

13

Storage / Compression

* Dramatic reduction in storage cost
* The same art assets as conventional rendering

« Only additional storage requirement over existing
techniques is a displacement map

Stored Polygons Rendered Total Memory
Polygons
Low resolution 5160 triangles > 1.6M triangles VB/IB: 100K
Froblin model 2K x 2K 16 bit displacement
map: 10 MB
ZBrush High res >15M triangles >15 M triangles ~270MB VB and 180MB IB
Froblin model storage (450 MB)

CJ SIGGRAPHASIA2008

NEW HORIZON

Thus we can think of hardware tessellation as an effective form of geometry
compression. We can see this in the table where we compare the footprint for a
GPU tessellation-ready model (a little over 10 MB) with a comparable high
resolution model for the full character mesh (450 MB). We see that for a modest
increase in memory footprint, we dramatically increase the total polygonal count
for the rendered mesh when using GPU tessellation.

Rendering Tessellated Characters

Use interpolative planar subdivision with displacement mapping:
Fast and efficient surface evaluation

We use interpolative planar subdivision with displacement to efficiently render our
highly detailed characters. The benefits of this approach (as opposed to higher order
surface evaluation) is extremely fast computation of new surface positions.
Additionally, the interpolation happens on triangular domain, which allows us to use
the same low-resolution mesh assets as traditional rendering for the control cage.

15

Rendering Tessellated Characters

We can use tessellation to control how fine we are going to subdivide this character’s
mesh.

We specify tessellation level, controlling the amount of amplification, per draw-call.

We can use the information about character location on the screen or other factors
to control the desired amount of details.

Per-draw call tessellation level specification works well for rendering individual
characters, such as this contemplative Froblin here.

16

Tessellation and Crowd Rendering

Crowded, dynamic scenarios can dramatically increase total # of draw calls

However, this approach doesn’t necessarily scale well for dynamically simulated
scenarios, as in this picture (and our environment).

If we use this strategy, the amount of draw-calls can increase drastically in crowded
scenarios, as the number of tessellated characters we wish to render increases.

17

Tessellation and Crowd Rendering:
Requirements

Need to support dynamic number of detailed characters in view

In many scenarios, we may not know the exact number of tessellated characters in a
given view. This is particularly important in cases where the simulation happens on
the GPU, and changes interactively, with no a priori control.

18

Tessellation and Crowd Rendering:
Requirements

Need stable frame rate, regardless of the number of tessellated characters in view

We need to be able to render high quality detailed characters, even if we suddenly
enter extremely crowded areas, without bringing the application down to a crawl.

19

Tessellation and Crowd Rendering: Solution

Combine tessellation and instancing for efficient rendering

To address this challenge, we utilize DirectX 10.1 features for level of detail
management to render our froblins as an army of instanced characters.

20

Diverse, High Quality Crowds with Minimal
Memory Footprint and a Single Draw Call

e
r F L _°N

Tessellation and displacement mapping are applied only to the characters in the
most detailed level ()

_ e T .

We can use this method along with stream out buffers and geometry shaders for GPU
scene management and texture arrays to create visually interesting and varied crowd
of characters. Here in the example, we note that the creatures tinted with red are
rendered with GPU tessellation, the green froblins are rendered with conventional
rendering and the blue froblins use simplified geometry.

21

Tessellation Level Computation

T,=clamp(M - T/ N, 1, Tro)
* N characters rendered with tessellation
— Obtain character count in this LOD using stream out query

* Bound the overall number of amplified triangles generated by
GPU tessellation

» Total primitive count never exceeds than the cost of M fully
tessellated characters

— For tessellated characters in view

— Avoids polygonal count explosion

nnnnnnnnnnn

The tessellation level is calculated as follows:

Here, T, is the tessellation level to be used for character instances in the first detail
level, N is the number of character instances in the first detail level, and T, is the
maximum tessellation level to use for a single character. This scheme effectively
bounds the number of triangles created by the tessellator, and ensures that the
primitive count will never increase by more than the cost of M fully tessellated
characters. If there are more than M such characters in the view frustum, this
scheme will divide the tessellated triangles evenly among them. While this can lead
to slight visual popping as the size of the crowd changes dramatically from one frame
to the next, in a lively scene with numerous animated characters this popping is very
hard to perceive.

22

Character Rendering Optimizations

>
.

When we render animated characters with subdivision, we need to perform
animation calculations on the control mesh (the superprimitives), and then
interpolate between the animated superprimitive vertices. A brute force approach of
transforming and animating the superprimitive vertices in the evaluation shader
wastes performance and bandwidth due to redundant computations — all newly
generated tessellated vertices would perform the same computations as on the
original vertices. Because hardware tessellation can generate millions of additional
triangles, it is essential to minimize the amount of per-vertex computations post-
tessellation, and to perform animation calculations only once per control vertex.

23

1/9/2009 3:44 PM

w Control Cage Pre-Pass

* Perform animation and Pass 1: Control cage
transformation on control cage animation and
ina pre-pass transforms
— Prior to tessellation pass

Stream Out Buffer

nnnnnnnnnnn

We improve performance with a multi-pass approach for rendering out animated
characters. We compute control cage pre-pass, where we can compute all relevant
computations for the original low resolution mesh, such as animation and vertex
transformations. This method is general and takes advantage of Direct3D® 10 stream
out functionality.

In the first pass we perform input mesh animation and transformations; rendering
the base mesh vertices as instanced sets of point primitives, skinning them, and
streaming out the results. Since we are performing this computation on the coarse
input mesh, we can afford higher quality skinning as well as significantly reduce
geometry transform cost.

24

¥ Control Cage Pre-Pass

1/9/2009 3:44 PM

Perform animation and
transformation on control cage
in a pre-pass

Allows higher quality and more
complex per-vertex operations

Pass 1: Control cage
animation and
transforms

Stream Out Buffer

Pass 2: Tessellate

the control cage

CJ SIGGRAPHASIA2008

In the next pass, we tessellate the already animated and transformed mesh, using the
original input primitive vertices’ vertex ID and instance ID to retrieve and interpolate
the transformed vertices from the stream out buffer, and apply displacement

mapping.

25

1/9/2009 3:44 PM

w Control Cage Pre-Pass

* Useful approach for any Pass 1: Control cage

character rendering system animation and
transforms

— Ex: Animated and transformed
characters rendered into shadow
maps, reflections / refractions,
etc.

Stream Out Buffer

Pass 2: Render
* However, a brute force approach Transformed and

for stream out may hamper Animated Mesh
performance

Note that using this multi-pass method for control cage rendering is beneficial not
only for rendering tessellated characters, but for any rendering pipeline where we
wish to reuse results of expensive vertex operations multiple times. For example, we
can use the results of the first pass for our animated and transformed characters for
rendering into shadow maps and cube maps for reflections.

26

¢ Efficient Control Cage Pre-Pass

1/9/2009 3:44 PM

animation and
data transforms

* Combine with shader-based Compress vertex data
vertex (de)compression to

* Do not stream out full vertex Pass 1: Control cage

Stream Out Buffer

reduce bandwidth between
passes

Fetch vertex data and un-
compress

HORIZONS

Pass 2: Tessellate the
control cage

‘) SIGGRAPHASIA2008
NEw

Although it is helpful to stream and re-use the animation calculations, this alone is

not fully effective.

The vertex data will be streamed at full precision, and the evaluation shader must still

pay a large cost in memory bandwidth and fetch instructions to retrieve it.

We augmented our control cage multi-pass method with vertex compression and

decompression.

27

Multi-Pass Animation with Dynamic

Vertex Compression

* Reduce stream out memory footprint

—Between the pre-pass and tessellated
pass

* Reduce fetch bandwidth for tessellated
pass

nnnnnnnnnnn

This modification helps reduce the amount of memory being streamed out per
character, as well as reduce vertex fetch and vertex cache reuse for the evaluation
shader.

Pre-Pass Vertex Compression

* Pack transformed vertex R) o
data into 128 bit format S N R
. c B (]l‘lox) (]:l’) (I;Il,)
* Requires a single vertex A v v
fetch to load the entire vertex S —
32 bits

nnnnnnnnnnn

We use a compression scheme to pack the transformed vertices into a compact 128-
bit format, allowing the tessellation pass to load a full set of vertex data using only

one vertex fetch.

29

Pre-Pass Vertex Compression

* Pack transformed vertex R L o
data into 128 bit format S lLG |els
. c B (]l‘{;) (]:l!) (Ilql‘)

* Requires a single vertex A v v

fetch to load the entire vertex S —

32 bits

nnnnnnnnnnn

We compress vertex positions by expressing them as fixed-point values which are
used to interpolate the corners of a sufficiently large bounding box that is local to

each character.

30

Pre-Pass Vertex Compression

* Pack transformed vertex * [@ |
- & G Z Te I
datainto 128 bit format &~ * ="

—Only one vertex fetch to A [
load the entire vertex N, PO

nnnnnnnnnnn

We can compress the tangent frame by converting the basis vectors to spherical
coordinates and quantizing them. Spherical coordinates are well suited to
compressing unit length vectors, since every compressed value in the spherical
domain corresponds to a unique unit-length vector.

31

Pre-Pass Vertex Compression

« Pack transformed vertex * | & | @
. . G z Ty T
datainto 128 bit format 5"
(10) (1n (11

—Only one vertex fetchto 2 | o | .,
load the entire vertex T mbe

nnnnnnnnnnn

Texture coordinates are compressed by converting the uv coordinates into a pair of
fixed-point values, using whatever bits are left. To ensure acceptable precision, this

requires that the uv coordinates in the model to the 0-1 range, with no explicit tiling
of textures by the artist.

Performance Comparison

* Character rendered with and w/out continuous
tessellation, performing scene management

Polygons Frame Rate

Low-resolution mesh (no tessellation 5,196 tri 112 fps (8.86 ms)
used)

Tessellated mesh, single pass 21Mtri 51 fps (19.61 ms)

Tessellated mesh, multi-pass, no vertex 2.1 M tri ‘ 49 fps (20.24 ms)

compression
|

Tessellated mesh, multi-pass and ' 21Mtri 79 fps (12.71 ms)
vertex compression |

“Configuration: AMD reference platiorm with AMD Athion™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2G8 RAM. ‘ SIGGRAPHASIA2008
GPU: ATI Radeon™ HD 4870 Graphics. Motherboard; ASUSTsk M2R32-MVP, Memory: DDR2-800 400 MHz.

RIZON
Operating System: Windows Vista® SP1.” NEW HORIZONS

Here we have performance analysis for different methods of rendering our character,
starting from conventional (no GPU tessellation rendering).

Performance Comparison

* Character rendered with and w/out continuous
tessellation, performing scene management

Low-resolution mesh (no tessellation 5,196 tri 112 fps (8.86 ms)
used)

Tessellated mesh, single pass 2.1 M tri 51 fps (19.61 ms)

Tessellated mesh, multi-pass, no vertex 2.1 M tri
compression

49 fps (20.24 ms)

Tessellated mesh, multi-pass and 2.1 Mtri 79 fps (12.71 ms)
vertex compression

Rendered with GPU
"

*Configuration: AMD reference platform with AMD Athlon™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2GB RAM. ‘ SIGGRAPHASIA2008
GPU: AT Radeon™ HD 4870 Graphics. Motherboard: ASUSTek M2R32-MVP. Memory: DDR2-800 400 MHz

R
Operating System: Windows Vista® SP1.” NEW HORIZONS

We notice that brute force conversion to GPU tessellation reduces performance (as
compared to rendering the input low resolution mesh) to about 50% while
dramatically increasing the overall quality of character rendering (as seen in this
image).

Performance Comparison

* Character rendered with and w/out continuous
tessellation, performing scene management

Polygons Frame Rate

Low-resolution mesh (no tessellation ‘ 5,196 tri 112 fps (8.86 ms)
used)

Tessellated mesh, single pass 2.1 Mtri . 51 fps (19.61 ms)

Tessellated mesh, multi-pass, no vertex | 2.1 M tri 49 fps (20.24 ms)
compression

Tessellated mesh, multi-pass and 79 fps (12.71 ms)

vertex compression

21Mtri

“Configuration: AMD reference platiorm with AMD Athion™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2G8 RAM. ‘ SIGGRAPHASIA2008
GPU: ATI Radeon™ HD 4870 Graphics. Motherboard; ASUSTsk M2R32-MVP, Memory: DDR2-800 400 MHz.

RIZON
Operating System: Windows Vista® SP1.” NEW HORIZONS

A straight-forward conversion of GPU tessellation to multi-pass rendering doesn’t
offer any performance improvement, as we notice here.

35

Performance Comparison

* Character rendered with and w/out continuous
tessellation, performing scene management

Low-resolution mesh (no tessellation 5,196 tri 112 fps (8.86 ms)
used)

Tessellated mesh, single pass 2.1 Mtri 51 fps (19.61 ms)

Tessellated mesh, multi-pass, no vertex ' 2.1 Mtri : 49 fps (20.24 ms)
compression

Tessellated mesh, multi-pass and 2.1 M tri 79 fps (12.71 ms)
vertex compression

54% improvement over single pass GPU Tessellation performance

Rendered with GPU.
tessellston

“Configuration: AMD reference platiorm with AMD Athion™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2G8 RAM.) SIGGRAPHASIA2008

GPU: ATI Radeon™ HD 4870 Graphics. Motherboard; ASUSTek M2R32 MVP. Memory: DDR2-800 400 MHz bl il
Operating System: Windows Vista® SP1."

However, although the compression scheme requires additional ALU cycles for both
compression and decompression, this is more than compensated for by the reduction
in memory bandwidth and fetch operations in the evaluation shader.

The multi-pass GPU tessellation approach with shader-based vertex compression
provides 54% performance increase over the single pass GPU tessellation
performance.

36

Performance Comparison

* Character rendered with and w/out continuous
tessellation, performing scene management

Low-resolution mesh (no tessellation 15,196 tri 112 fps (8.86 ms)

used)

Tessellated mesh, single pass 2.1 M tri 51 fps (19.61 ms)

Tessellated mesh, multi-pass, no vertex , 2.1 Mtri ‘ 49 fps (20.24 ms) ‘

compression

Tessellated mesh, multi-pass and 2.1 M tri 79 fps (12.71 ms)

vertex compression
70% as fast as low-resolution mesh rendering,
with 411 X polygon budget increase!

“Configuration: AMD reference platiorm with AMD Athion™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2G8 RAM.) SIGGRAPHASIA2008
NEW HORIZONS

GPU: ATI Radeon™ HD 4870 Graphics. Motherboard: ASUSTek M2R32-MVP. Memory: DDR2-800 400 MHz.
Operating System: Windows Vista® SP1."

Furthermore, we notice that this method is 70% as fast as low-resolution mesh
rendering, while rendering over 411 times MORE polygons for our high-quality

character!

Dynamic LOD Performance

» Crowded scenarios comparison, full scene rendering
Constant tessellation level per LOD 17 fps
Dynamic tessellation computation 24 fps
based on crowd density (41% increase)
*Configuration: AMD reference platform with AMD Athion™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2GB RAM. ‘ ’ SIGGRAPHASIA2008
GPU: ATI Radeon™ HD 4870 Graphics. Motherboard: ASUSTek M2R32-MVP, Memory: DDR2-800 400 MHz Ga% PaRisaAR
Operating System: Windows Vista® SP1.”

In this table, we compare performance of using dynamic method for computing
tessellation amount based on crowd density versus a statically specified tessellation
level. We notice that our method provides 41% increase in overall frame
performance, which is impressive considering a huge number of other elements
present in this frame (performing GPU simulation, rendering cascade shadows, post-
processing, just to name a few).

38

Challenges with Displacement Mapping for
Character Rendering

Next, we also wanted to mention a couple of production challenges that we’ve
encountered while working on our algorithms. One particular aspect of rendering
characters with displacement mapping is dealing with maps that contain texture uv
borders as they frequently introduce texture uv seams.

40

Character Modeling and Texture Seams

UV borders are rarely one-to-one in parameterization. Unless neighboring borders are
laid out with the same orientations and lengths, displacing with these maps will
introduce geometry cracks along the seams.

Here we highlighted the specific edges along the texture seam (in green). Note that
the adjacent edges for this seam do not have uniform parameterization.

41

1/9/2009 3:44 PM

Example Displaced Seam Cracks

Example of a visible crack generated due to inconsistent values across the edges of
displacement map for this character. This crack is generated along the seam that we
highlighted in green on the previous slide.

Note that the images’ contrast and brightness have been manipulated for higher
contrast.

42

Displacement and Seam Cracks: Causes

*Bilinear
discontinuities
across seams

+ Varying floating
point precision
on

CJ SIGGRAPHASIA2008

NEW HORIZONS

Typically, with brute force displacement map generation, different floating point
values are created across edges. Even if we had textured our character with tiled
textures (however impractical of a concept), while this seamless parameterization
alleviates bilinear artifacts, we still have to worry about floating point precision
mismatch along the seams.

Reducing Displacement Cracks

* Generate maps with near-correct
displacement

— Correct uv borders

nnnnnnnnnnn

To solve this problem, we post-process our displacement maps by correcting all the
texture uv borders as follows.

44

Reducing Displacement Cracks

1. ldentify border triangles

a) Edges with vertices with multiple
sets of uvs

uuuuuuuuuuu

First, we identify the border triangle edges (i.e. edges that contain vertices with more
than one set of texture coordinates).

45

Reducing Displacement Cracks

es with vertices with multiple

2. Compute the texel location for these vertices
for each border edge

3. Fetch, average and update the texels for
matching vertices

nnnnnnnnnnn

Then, for each border edge, we compute the texel locations for the vertices; fetch,
average, and update the texels for matching vertices.

Reducing Displacement Cracks

* Ensures crack-free displacement using
nearest neighbor texture filtering

— If border vertices map to unique texel locations

nnnnnnnnnnn

As long as all these border vertices map to unique texel locations, we can ensure a
crack-free displacement mapping using nearest neighbor texture filtering.

47

Reducing Displacement Cracks

* Generate higher order filtering and
alleviate displacement seams

— Sample the edge with equidistant points
— For each sampled point:
* Fetch, average and update the texels

— Repeat the process several times to enhance
result

» May not have a one-to-one mapping

* At the end, dilate the uv borders

nnnnnnnnnnn

To improve uv seams for linear texture filtering and/or hardware tessellation, for each
border edge, we sample the edge with equidistant points. Then, for each sampled
point, we fetch, average and update the texels for matching points. Because the

points might not map one-to-one, we repeat the above process several times to
enhance the result. At the end, we dilate the uv borders.

48

Benefits of Map Post-Processing

« Afast, easy to implement technique
* Generates good results
* Does not change UV layout

* Does not require additional storage

— No extra sets of uvs per vertex

nnnnnnnnnnn

This technique is attractive because it is fast, simple to implement and it generates
good results.

Benefits of Map Post-Processing

* No additional computation at run-time during
surface evaluation

— Quite crucial for subdivision surfaces with multi-
million polygon models

* Integrated into publicly available mesh
generation tool, AMD GPUMeshMapper

— http://ati.amd.com/developer/gpumeshmapper.html

Furthermore, this method does not require additional computations at run-time,
which is very important when evaluating surface positions for subdivision surface,
which frequently may contain millions of triangles at render time!. This functionality
is integrated into the freely available GPUMeshMapper tool.

Match Creative Artistic Vision for Character

Rendering with GPU Tessellation

« Dramatic increase in visual fidelity with
use of GPU tessellation in conjunction
with displacement mapping

— Maintaining low associated storage

* Multi-pass animation combined with
shader-based vertex compression
provides excellent rendering
optimizations

* Post-processing displacement maps
yields higher quality visual results
without run-time costs

nnnnnnnnnnn

To conclude, our methods provide a set of techniques allowing dramatic
improvement in visual quality for our rendered characters, letting technology match
the creative vision of the artists. Using GPU tessellation with displacement mapping
and the multi-pass technique with vertex compression in the shaders allows excellent
performance with tremendous jump in visual fidelity. Additionally, we also developed
a method to increase the quality of generated displacement maps to use with our
algorithms.

51

Acknowledgments

* Josh Barczak and Budirijanto Purnomo

* Abe Wiley, Jeremy Shopf, Christopher Oat from
AMD Game Computing Applications Group

nnnnnnnnnnn

I'd like to thank some folks who contributed to the techniques we just described and
who also worked on the Froblins demo.

52

Additional Materials

http://game.amd.com

Look for samples, more information and the Froblins

demo

http://ati.amd.com/developer

http://ati.amd.com/developer/techreports.html

http://developer.amd.com/documentation/videos/pages/froblins.aspx
For more details about the Froblins demo

GPUMeshMapper available from:
http://developer.amd.com/gpu/MeshMapper/Pages/default
.aspx

C) SIGGRAPHASIA2008

NEW HORIZON

If you are interested in further information, here are some helpful links.

53

Questions?

nnnnnnnnnnn

54

Thank You!

55

DISCLAIMER
The information presented in this document is for informational purposes only and may
contain technical inaccuracies, omissions and typographical errors.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT WILLAMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT,
SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF
ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION : . :

vanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,
ATI, the ATl logo, Radeon and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other names are for informational purposes only and may be
trademarks of their respective owners.

C) SIGGRAPHASIA2008

NEW HORIZONS

56

